
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Combinatorial Approach to Fairness Testing of
Machine Learning Models

Ankita Ramjibhai Patel1, Jaganmohan Chandrasekaran2, Yu Lei1, Raghu N. Kacker3, D. Richard Kuhn3

1Dept. of Computer Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, USA
2Commonwealth Cyber Initiative (CCI), Virginia Tech, Arlington, Virginia 22203, USA

3Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland
20899, USA

Abstract—Machine Learning (ML) models could exhibit
biased behavior, or algorithmic discrimination, resulting in
unfair or discriminatory outcomes. The bias in the ML model
could emanate from various factors such as the training dataset,
the choice of the ML algorithm, or the hyperparameters used to
train the ML model. In addition to evaluating the model’s
correctness, it is essential to test ML models for fair and
unbiased behavior. In this paper, we present a combinatorial
testing-based approach to perform fairness testing of ML
models. Our approach is model agnostic and evaluates fairness
violations of a pre-trained ML model in a two-step process. In
the first step, we create an input parameter model from the
training data set and then use the model to generate a t-way test
set. In the second step, for each test, we modify the value of one
or more protected attributes to see if we could find fairness
violations. We performed an experimental evaluation of the
proposed approach using ML models trained with tabular
datasets. The results suggest that the proposed approach can
successfully identify fairness violations in pre-trained ML
models.

Keywords—Fairness Testing, Algorithmic Discrimination,
Bias Detection, Testing Model Bias, Testing ML model,
Combinatorial Testing

I. INTRODUCTION
Machine Learning (ML) models are widely used across

domains in automated decision-making processes. For
example, ML-based recommender systems are used by banks
to approve or deny loans for their applicants [10], companies
use ML-based software applications to filter/select candidates
in the hiring process [12, 13]. Despite its impressive predictive
capabilities, ML models inadvertently exhibit bias and result
in discriminatory behavior, also referred to as algorithmic
discrimination [2, 11, 13, 39].

A bias in an ML model could be introduced via various
factors such as the training dataset, the choice of the ML
algorithm, or the hyperparameters used to train the ML model.
Recent reports in [11, 27] illustrate the biased behavior of ML
models and their adverse effects on society. Thus, in addition
to an ML model’s correctness, there is a need to test and
ensure that the ML model behaves in an unbiased and non-
discriminatory manner. In recent years, a significant amount
of research has been reported on fairness testing [22]. From a
testing perspective, the objective of fairness testing is to
evaluate whether a model under test exhibits a consistent, non-
discriminatory behavior for all its use cases?

ML models used in the automated decision-making
process must avoid discriminating against sensitive
characteristic features of individuals such as age, race, sex,

and ethnicity [1]. The sensitive characteristics vary depending
on the domain, and they are referred to as protected attributes.
Assume a pre-trained model M, on receiving an input I,
predicts a class label C. A discriminatory behavior (also
referred to as fairness violation) of M can be broadly classified
into two types: (1) individual discrimination and (2) group
discrimination [1, 15]. Model M exhibits individual
discrimination if M predicts a different outcome for two
similar instances. Model M exhibits group discrimination if M
favors or discriminates instances belonging to a specific group
over the other groups.

Some recent work has been reported on fairness testing [1,
17, 18, 19, 20, 23, 24, 26]. Galhotra et al. proposed THEMIS,
a causality-based random test generation technique to identify
discriminatory behavior of ML models [19]. Aggarwal et al.
proposed a symbolic execution-based approach to generate
test instances and then use a local explanation tool called
LIME to identify individual discriminations in an ML model
[1]. Udeshi et al. proposed Aeqitas, a testing technique to
discover discriminatory inputs by randomly sampling the
input space [18]. The results from existing studies suggest that
traditional testing techniques can effectively be adapted to
identify the discriminatory behavior of ML models.

In this paper, we present a combinatorial approach to test
ML models for individual discriminations. We believe that the
key insight that has allowed combinatorial testing to be
effective for general software testing could also apply to
fairness testing. That is, while the behavior of an entire model
could be affected by many factors, individual fairness
violations may be caused by only a few factors. Our approach
consists of two phases: Generating T-Way Tests and
Identifying Fairness Violation. In Phase 1, we generate t-way
tests based on a training dataset. We begin this phase with the
design of an Input Parameter Model (IPM). All attributes
excluding the class label attribute from the training dataset are
mapped as parameters. Then, we identify representative
values for each parameter based on the corresponding
attribute’s data type. In the case of categorical (string)
attribute(s), we identify and map its unique values as
representative values. For numerical attribute(s), we identify
its representative values via discretization, a process of
converting numerical (continuous) values into a set of discrete
values [6].

Next, we identify constraints using an unsupervised
learning algorithm that infers the underlying relationships
among different attributes (excluding the class label) from the
training dataset. The relationships identified by the learning
algorithm are mapped as constraints in our IPM. Finally, we

Preprint: International Workshop on Combinatorial Testing, 2022

generate abstract t-way tests that are later converted into
concrete t-way tests.

Using the concrete t-way tests, in phase 2, we identify
individual fairness violations using a counterfactual approach.
Given a t-way test instance, we generate perturbations that are
similar to the t-way instance by modifying the value of one or
more protected attributes while retaining the values of non-
protected attributes and respecting all the constraints. On
receiving the perturbated instance(s) as input, if the ML model
results in an outcome (C`) that differs from the outcome (C)
produced for the original t-way instance, then the ML model
is considered to exhibit an individual fairness violation (C !=
C`).

We report an experimental evaluation of the proposed
approach. Three widely used datasets, namely Adult
Income[29], German Credit[30], and COMPAS[31], are used
as our subject datasets. We build ML classifiers (models) for
each dataset using four popular Machine Learning algorithms,
namely Logistic Regression, Random Forest, Support Vector
Machines, and Deep Neural Network. We generate t-way test
sets based on the datasets and test the ML models for fairness
violations. Our results suggest that the combinatorial approach
can successfully identify fairness violations in ML models. In
some cases, more than 40% of t-way test cases resulted in a
fairness violation. Furthermore, the results indicate that t-way
test cases generated using our approach can identify a
substantial number of fairness violations across different types
of ML classifiers. This suggests that the proposed approach is
model-agnostic and can be adopted to test fairness violations
for different ML models.

The remainder of this paper is organized as follows.
Section II provides the introduction of Fairness Testing.
Section III presents our approach, illustrated with an example.
In Section IV, we present our experimental design, reports the
results, and discussion about our results. Section V discusses
the existing work on fairness testing. Section VI provides the
concluding remarks and plans for future work.

II. BACKGROUND
ML Model: To build an ML model, first, a practitioner

selects an ML algorithm; provides a training dataset and a set
of hyperparameters as input to the ML algorithm. Then, the
ML algorithm infers a decision logic based on the underlying
patterns discovered from the training dataset. The derived
decision logic is referred to as the ML model. An ML model
exhibits fair behavior if it does not favor or discriminate
against a specific individual or a particular group.

Protected Attributes: The attributes from the training
dataset that are sensitive and need to be protected against
discrimination are referred to as protected attributes [22].
Example of protected attributes includes Race, Color,
Religion, Sex, and Familial Status [28]. Fairness testing aims
to evaluate and assure that the ML model exhibits a non-
discriminatory behavior.

Individual Discrimination: Given two valid inputs
(instances) that differ only by the protected attribute(s), an ML
model is expected to predict the same outcome for both the
inputs. Otherwise, the ML model is considered to exhibit
individual discrimination [1]. For example, consider two
applicants with identical credit history but differ only by their
Race. If an ML model approves the loan for one applicant
while rejecting the other, the model exhibits individual

discrimination. In the rest of the paper, we refer to individual
discrimination simply as a fairness violation unless otherwise
specified.

Group Discrimination: If an ML model favors or
discriminates instances belonging to a specific group over the
other groups, it is considered group discrimination. For
example, Amazon AI recruiting tool preferred male
candidates over female candidates in the candidate hiring
process [2]. Buolamwini et al. demonstrated that
commercially available facial recognition software
misclassifies more female faces than male faces [39].

Counterfactual Explanation: Explainable Artificial
Intelligence (XAI) tools generate explanations for decisions
made by ML models [34]. A counterfactual approach is one
of the two commonly used approaches to explain a model’s
decision.

Assume a pre-trained model M, on receiving an input I,
predicts a class label C. A counterfactual approach identifies
a minimum set of features that, if removed, shall result in a
different prediction [35]. That is, a counterfactual is generated
by making minor change(s) to the original instance, resulting
in a different outcome than the original prediction.

III. APPROACH
This section presents a combinatorial approach to identify

fairness violations of pre-trained ML models that take an
instance as input and outputs a prediction. Figure 1 presents
the overview of our approach. It consists of two major phases:
(1) Generating T-Way Tests, where a t-way test set is
generated; and (2) Identifying fairness violation, where the t-
way tests are executed to detect fairness violations.

A. Phase 1: Generating T-Way Tests
In Phase 1, we generate t-way test cases (instances) based

on the training dataset. A training dataset consists of
numerical attributes, categorical attributes, or a combination
of both. We first create an Input Parameter Model (IPM) for
the training dataset. All attributes except the class label
attribute from the training dataset are mapped as a parameter
in the IPM. Next, we identify representative values for each
identified parameter (attribute) based on its data type (numeric
or categorical).

For a categorical attribute, we identify and map all its
unique values as parameter values. For a numerical attribute,
we identify the parameter values using an entropy-based
discretization approach. Discretization is a process of
converting numerical (continuous) values into a set of discrete
values. A numerical attribute is divided into a small number
of intervals, where each interval is mapped to a bin [6]. In
entropy-based discretization, the entropy is calculated based
on the class label. Then, the entropy-based approach tries to
find the best split (bins) where the majority of values in a bin
belong to the same class label [40]. The bins identified using
the discretization approach are mapped as the parameter
values. That is, if a numeric attribute is divided into n bins
using the discretization approach, then “n” bins are considered
as the attribute’s representative values.

Next, to derive constraints, we first modify the dataset by
mapping all the numeric attributes to their respective bins
identified via discretization. Our goal is to identify the
relationships among all attributes, excluding the class label
attribute. Hence, we remove the class label attribute from the

dataset. Then, the modified dataset is provided as an input to
Apriori, an association rule mining algorithm [23]. The apriori
algorithm discovers association rules in a two-step process.
First, they identify the relationship among attributes that
appear together more frequently in the training dataset. Next,
the algorithm calculates association rules between frequently
appearing attributes (identified in the previous step) using a
statistical score. These association rules are mapped as
constraints in our IPM. Using constraints enables us to
generate valid test cases. Then, we generate an abstract t-way
test set using ACTS [4, 14].

The final step in phase 1 is to derive a concrete test set
from the abstract test set. Recall that our approach discretizes
the numeric attributes. Therefore, in this step, for numeric
attributes, we replace the abstract value with a value (selected
randomly) from the corresponding bin. The t-way concrete
test set (test instances) is used to identify the fairness
violations of the pre-trained ML model.

B. Phase 2: Identifying Fairness Violation
In Phase 2, we identify fairness violations by perturbing

the test instances using a counterfactual approach. First, each
test instance (i.e. a concrete test set generated from Phase 1) is
provided as an input to the pre-trained ML model, and its
predicted class label is recorded. Then, we generate a set of
perturbated instances (from the test instance) by changing the
value of one or more protected attribute(s) while retaining the
value of non-protected attributes, execute the model with the
perturbated instances and record its predicted class label. If the
predicted class label for any of the perturbated instances
differs from the predicted class label of the original test
instance, then it is considered a fairness violation. Otherwise,
the model is considered to exhibit fair behavior.

C. Example
We illustrate our approach using an example. Assume an

ML classifier is used to predict the admission decisions for
prospective candidates. The ML classifier is trained using a
dataset that consists of 5 attributes, namely Gender, Race,
State, Final Score, and Decision. Gender, Race, and State are

categorical attributes with 3, 4, and 10 unique values,
respectively. Final Score is a numerical attribute. Decision is
a class label with two values – Accept, Reject. Based on
domain knowledge, we identify Gender and Race as protected
attributes among the four attributes.

We begin the first phase by generating an IPM. We
identify the four attributes (excluding the class label attribute)
Gender, Race, State, Final Score as parameters. For the three
categorical attributes (Gender, Race, State), their unique
values are identified as parameter values; We discretize the
Final Score into eight bins, and they (bins) are identified as its
parameter values. Next, to identify constraints, we use the
Apriori algorithm. The algorithm identifies two association
rules by analyzing the training dataset {State = CA => Final
Score >= 70, State = GA => Final Score < 90}. We map these
association rules as constraints in our IPM. Next, we generate
80 abstract t-way test cases (t=2) followed by deriving the
concrete test cases.

Using constraints allows us to generate valid t-way tests.
That is, in the generated t-way tests, if the state is CA, then the
final score will always be greater than or equal to 70.
Similarly, if the state is GA, then the final score will always
be less than 90.

In the second phase, we use a counterfactual XAI tool to
identify if there exists a counterfactual for any test instance
from the t-way test set. We provide the ML classifier, dataset,
test instance, a list of protected attributes (Gender, Race) as an
input to the counterfactual tool. Recall that our goal is to
identify if changing the protected attributes results in a
different outcome. The tool successfully identifies a
counterfactual for one of the test instances from the concrete
test set: (male, white, CA, 92). The ML classifier predicts
Admit for the test instance (original prediction). For one of the
perturbated instances: (female, black, CA, 92), we observe
that the model predicts Reject. As the counterfactual indicates,
modifying the protected attribute(s) results in a different
outcome, suggesting a fairness violation of the ML classifier.

FIGURE 1 – APPROACH OVERVIEW

IV. EXPERIMENTS
In this section, we first present the design of our

experiments, including the research question(s), the datasets,
the subject models, discretization techniques, the
counterfactual generation tool, and the metrics used to identify
fairness violations. Next, we present and discuss the results of
our experiments. Finally, the threats to validity are discussed.

A. Research Questions
Our experiments are designed to answer the following

research question: How effective is our combinatorial testing-
based approach in fairness testing of ML models?

B. Datasets
In our experiments, we use three datasets, namely the

Adult Income [29], German-Credit [30], and COMPAS [31]
datasets, that are among the most widely used in the fairness
testing domain [1, 19, 32, 33]. Bellamy et al. presented IBM
AI Fairness 360, a software library to detect and mitigate bias
in AI models [5]. They made their scripts publicly accessible.
We reuse their scripts and preprocess the subject datasets [7].

• The German credit dataset is used to classify
individuals as either good or bad credit risk based on
their personal and financial information. The dataset
consists of 1000 instances and 21 attributes (8
numerical + 13 categorical). Among the 20
attributes(excluding the class label), Sex and Age are
treated as protected attributes.

• The Adult dataset contains census information of
individuals that is used to determine if an individual
can earn more than $50,000 per year. The dataset has
13 attributes with five numerical and eight categorical
attributes. The Adult dataset has two protected
attributes: Sex and Race.

• The Correctional Offender Management Profiling for
Alternative Sanctions (COMPAS) dataset consists of
information of defendants such as criminal history,
prison time, demographics, and it is used to predict the
likelihood of a defendant to re-offend (recidivism).
The dataset contains 7214 records with four
categorical and five numerical attributes. Sex and Race
are treated as protected attributes. Note that, the
original COMPAS dataset had 52 attributes. We
preprocessed the dataset as per AI Fairness 360 [5, 7]
and retain ten attributes.

C. Subject Models
We evaluate our approach using four ML classifiers. Three

(out of four) ML classifiers are implemented using classical
ML algorithms, namely Logistic Regression(LR),
RandomForest(RF), and Support Vector Machines(SVM) that
are commonly used in fairness testing studies [1,17, 19, 33].
In addition to this, we also use a fourth ML classifier, a simple
Deep Neural Network(DNN) model with two hidden layers,
in our experiments. Thus, for each dataset, we train and build
four ML classifiers. Overall, we use twelve 12 ML classifiers
(subject models) in our experiments. Similar to earlier studies
[33], we train the ML classifiers using their default
configuration, provided by the sci-kit learn library [37].

D. Discretization
We use a decision-tree (entropy-based) algorithm to

discretize numeric attributes [37, 38]. The user can specify the

depth of the decision tree. A decision tree of depth n will
generate a maximum of 2n bins. Note that the depth of a
decision tree could affect the size of the t-way test cases
generated using our approach. A higher value (tree depth) can
result in a significantly large number of t-way test cases, thus
making it computationally expensive to identify fairness
violations in ML models. As a trade-off, similar to LIME, a
state-of-the-art XAI tool [8, 9], in our experiments, we limit
the depth of the decision tree to a value of 3. Thus, a numeric
attribute can be discretized into a maximum of 23 bins (8 bins).
That is, a discretized numeric attribute will have at most eight
bins.

In our experiments, we identify representative values for
numerical attributes as follows: First, we calculate the total
number of unique values for each numerical attribute. If the
number of unique values is less than or equal to 8, we map the
unique values as the representative values for the attribute.
Otherwise, we use a decision tree algorithm with its default
configuration value (not explicitly specifying the depth of the
tree) and identify the representative values until either of the
two conditions is satisfied. (1) the number of bins identified
by the algorithm is less than or equal to 8; or (2) the number
of bins is greater than 8. In the first case, we map the identified
bins as the representative values for the attribute. In the second
case, we re-execute the decision tree algorithm by setting the
depth (of the tree) to 3 and discretizing the numerical attribute
into eight bins. These bins are identified as representative
values.

E. Constraints
In our experiments, we use Waikato Environment for

Knowledge Analysis (WEKA), an open-source ML
workbench tool, to identify the association rules from the
training dataset. We preprocess the training dataset by
converting all attributes to nominal datatype as required by
WEKA.

Next, we provide the modified dataset (input) to WEKA
and execute the algorithm (Apriori) with its default
configuration values. The Apriori algorithm identifies a list of
the top 10 association rules from the dataset. These association
rules are used as constraints in the t-way test generation.

F. Test Generation
Using ACTS, a combinatorial test generation tool [4, 14],

we generate t-way (t=2) abstracts which are then converted
into concrete t-way tests.

G. Counterfactual Generation
We use DiCE, a state-of-the-art XAI tool to identify a

counterfactual by modifying the values of protected attributes
while retaining the values of the non-protected attributes [36].
The DiCE tool allows a user to generate a counterfactual based
on specific attribute(s) [36]. Therefore, we provide a pre-
trained model, the concrete t-way test instance, and protected
attribute(s) as input to the DiCE tool. If successful, DiCE
generates a test instance that is almost identical to the original
instance but differs by the value of its protected attribute. In
other words, DiCE identifies a scenario where the model
predicts a different outcome on changing the protected
attribute while retaining the value of all other attributes. This
is considered as a fairness violation exhibited by the model.

H. Metrics
We assess our approach's effectiveness in terms of the

number of fairness violations revealed by a t-way test set. The
more fairness violations identified by a t-way test set, the more
effective the t-way test set is considered.

I. Results and Discussion
We present and discuss our experimental results. The

source code, data, and/or artifacts have been made available at
[16].

Table I presents the results of fairness violations of ML
models identified using t-way test sets. The Column headers
in Table I are self-explanatory.

TABLE 1- FAIRNESS VIOLATIONS IDENTIFIED BY T-WAY TESTS

D
at

as
et

s

N
um

be
r

of
 t-

W
ay

te

st
s

Pr
ot

ec
te

d
A

ttr
ib

ut
es

Number of fairness violations

Lo
gi

st
ic

R

eg
re

ss
io

n
(L

R
)

R
an

do
m

Fo

re
st

 (R
F)

Su
pp

or
t

V
ec

to
r

M
ac

hi
ne

s
(S

V
M

)
D

ee
p

N
eu

ra
l

N
et

w
or

k
(D

N
N

)
Adult

Income
676

Sex,
Race

58 25 23 11

German
Credit

81
Sex,
Age

5 10 9 26

COMPAS 64
Sex,
Race

27 37 24 4

Recall that we identify fairness violations by perturbing

each test instance using a counterfactual approach. Given a
test case, if we successfully identify a counterfactual (a
perturbation of the test case whose output differs from the
original prediction), we consider that the test case resulted in
a fairness violation.

Adult Income: For the Adult Income dataset, our approach
generates 676 t-way tests (t=2). The results indicate that a
substantial number of t-way test cases result in a fairness
violation. For the LR-based model, out of 58 t-way tests, we
observe that 27 t-way tests result in a fairness violation on
modifying either one of the two protected attributes: 16 t-way
tests cases result in a fairness violation on modifying attribute
Race whereas 11 t-way test cases result in a fairness violation
on modifying attribute Sex. The remaining 31 t-way test cases
(out of 58) result in a fairness violation on modifying both of
the protected attributes. In the case of the RF-based model, ten
t-way tests result in a fairness violation on modifying the Race
attribute, and one t-way test results in a fairness violation on
changing the Sex attribute. Fourteen t-way tests result in a
fairness violation on modifying the value of both the protected
attributes. For the SVM-based model, out of 23 t-way tests,
we observe that eight tests result in a fairness violation on
modifying either one of the two protected attributes (Race =
5, Sex = 3), and 16 tests result in a fairness violation modifying
both protected attributes.

German Credit: Based on the IPM derived from the
German Credit Dataset, we generate 81 t-way test cases. The
results indicate that t-way tests can detect fairness violations
among models trained using different ML algorithms. We
observe that across three ML models, t-way tests result in a
fairness violation on modifying both the protected attributes
(Sex and Age).

COMPAS dataset: Out of the 64 t-way test cases
generated using our approach, for the RF-based ML model,
more than 50% of t-way tests (37 t-way tests) result in a
fairness violation. Among these 37 t-way tests, 19 t-way tests
result in a fairness violation on modifying the Race attribute;
three t-way tests result in a fairness violation on modifying the
Sex attribute. The remaining 15 (out of 37) t-way tests result
in a fairness violation on modifying both the protected
attributes. For the LR-based ML model, 11 t-way tests result
in a fairness violation on modifying the Race attribute, one t-
way test results in a fairness violation on modifying the Sex
attribute, and 15 t-way tests result in a fairness violation on
modifying both the protected attributes. In the case of the
SVM-based ML model, 18 tests result in a fairness violation
on modifying both protected attributes, while the remaining
six tests result in a fairness violation on modifying either one
of the two protected attributes (Race = 5, Sex = 1).

For DNN based classifiers, we noticed DiCE takes a
longer execution time to identify a counterfactual. For
example, to identify a counterfactual for a pre-trained DNN
model (trained with the Adult Income dataset), on average,
DiCE takes 2 minutes per test case. So, it will take
(676*2)/60= 22.5 hours to complete the execution. Therefore,
for DNN models, we follow a brute-force approach as a
workaround. That is, for each test case, using a script, we
generate and execute all possible perturbations and identify if
there exists a counterfactual by comparing the output with the
original prediction.

Our results indicate that for the Adult Income dataset
(DNN model), nine t-way tests result in a fairness violation on
modifying either of the protected attributes (Race = 4, Sex =
5), while the remaining two tests result in a fairness violation
on modifying both the protected attributes. For the German
Credit dataset (DNN model), twelve t-way tests result in a
fairness violation on modifying both the protected attributes.
Additionally, fourteen t-way tests resulted in a fairness
violation on modifying either Age (4 instances) or Sex (10
instances) attributes. For the COMPAS dataset (DNN model),
we observed two tests result in a fairness violation on
modifying both the protected attributes, while the other two
tests result in a fairness violation on modifying either of the
two protected attributes.

Overall, the results suggest the following major points:
(1) The t-way test sets generated based on the three subject

datasets can identify fairness violations in pre-trained ML
models.

(2) The results also indicate that the proposed approach
can successfully detect fairness violations across different ML
model architectures. Furthermore, on executing a t-way set
across ML models (LR, RF, SVM, and DNN), we observe in
the case of the Adult Income dataset and German Credit
dataset, there is no overlap among the t-way test cases that
result in a fairness violations across all four ML models. In the
case of the COMPAS dataset, out of t-way tests that result in
fairness violations, there are only four tests that are common
among all ML models. This suggests a minimal overlap
among the t-way test cases (from the test set) that resulted in
a fairness violation across different ML models. That is, not
the same set of t-way test cases triggers a fairness violation
across ML models. We believe this indicates that t-way tests
are effective in identifying biases introduced by both the
training dataset and the learning algorithm.

(3) The results also indicate that the proposed approach
can identify fairness violations with a relatively small number
of test cases compared to the existing work [1]. We plan to
perform a detailed comparison as part of future work.

J. Threats to Validity
Threats to external validity occur when the results from

our experiments could not be generalized to other subjects.
The datasets and ML models used in our study have been used
in other studies in the fairness testing domain [1, 17, 19, 33].
We use four different algorithms (model architectures) to train
ML models. This reduces the risk of a lack of representatives
in the model architecture used in our study.

Threats to internal validity are factors that may be
responsible for the experimental results without our
knowledge. To mitigate the risk of human errors, we tried to
automate the experimental procedure as much as possible. In
particular, all the steps are automated except the identification
and mapping of constraints. Further, we have manually
verified some of the results if any surprising results occur. For
example, on executing the t-way test cases (676 tests)
generated for the AdultIncome dataset, 23 tests and 25 tests
resulted in a fairness violation for SVM and RF models,
respectively. However, for the LR model, we observed 58
tests (x2, compared to SVM and RF) that resulted in a fairness
violation. In such a scenario, we manually verified the
counterfactuals identified by DiCE.

V. RELATED WORK
This section discusses existing work on fairness testing

that is closely related to our work. First, we discuss existing
work that focuses on testing individual discriminations of ML
models. Udeshi et al. proposed Aqeutias, a testing technique
to discover discriminatory inputs that result in an individual
fairness violation [18]. In phase 1, they identify a set of
discriminatory inputs from a test set generated by randomly
sampling the input space (global search). In phase 2, they
identify additional discriminatory inputs by changing the
values of the non-protected attributes for the discriminatory
instance found in the global search. Furthermore, they
demonstrate that retraining the model with portions of the
discriminatory inputs improves its performance. Our work is
similar to theirs in generating test instances to identify
individual fairness violations. However, our work differs in
the following two ways: 1) Aqueitas generate test instances
using a random testing approach, whereas we use a
combinatorial approach to generate test instances. 2) Their
approach identifies discriminatory instances from the random
test set, and they (discriminatory instances) are further
perturbated by searching the neighborhood. In contrast, we
identify discriminatory instances using a counterfactual
approach by perturbating the protected attributes defined by
the user.

Galhotra et al. proposed THEMIS, a causality-based
technique to measure discrimination in software [19]. They
use a random test generation technique to identify
discriminatory test instances. In contrast, we use
combinatorial testing, a systematic test generation technique
to generate test cases and identify fairness violations. Zhang
et al. proposed an approach that generates discriminatory test
instances for Deep Neural Network (DNNs)-based models
[20]. Their work adopts a gradient descent and clustering-
based approach to identify individual discriminatory
instances. In contrast, we use a combinatorial testing-based

approach to generate test instances. Their approach focuses on
testing individual fairness violations in DNN models, whereas
our approach is model agnostic and can be used to test ML
models trained using different architectures.

Aggarwal et al. proposed an approach to generate test
inputs and identify individual discrimination in ML models
[1]. Their approach uses a combination of symbolic execution
and LIME, a local explainer tool to generate test instances and
identify individual discriminations. Once they identify a test
instance that identifies individual discrimination, they perturb
the test instance further by modifying its non-protected
attributes and generating additional test instances to test the
ML model for fairness violations. Similar to their work, the
goal of our approach is to generate test instances and identify
individual discriminations in an ML model. However, our
work differs in the following ways: 1) We generate test
instances using a combinatorial test approach. 2) Our
approach identifies individual discrimination by perturbating
a test instance using a counterfactual approach. 3)
Furthermore, we do not perturb discriminatory inputs further.

Next, we discuss the existing literature on applying
combinatorial testing for fairness testing. Morales et al.
proposed Coverage-Guided Fairness Testing (CGFT) that
aims to improve the performance of Aequitas, a testing
technique that identifies individual discrimination in a two-
step test generation process, namely global search and local
search. The CGFT aims to leverage combinatorial testing by
replacing the random test generation process in the global
search phase of Aequitas with a t-way test generation
approach and reduce the execution cost [17]. Our work is
similar to theirs in using combinatorial testing to generate t-
way test cases that are later used to identify individual
discrimination. However, our work differs in the following
way. CGFT uses an algorithm to control the number of t-way
test cases generated. Hence, the test set generated using their
algorithm has a combination of mixed strength t-way test
cases. In contrast, all test cases generated in our approach
belong to the same test strength (t=2). Furthermore, they do
not use constraints in their test generation process. In contrast,
we derive (from the training dataset) and use constraints in our
test generation process. We believe using constraints enables
our approach to generate valid and realistic t-way test cases
compared to their approach.

We also note that there is a significant number of existing
studies in literature, and we refer the reader to [21, 22] for a
comprehensive report on existing work on fairness testing for
machine learning systems.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented a combinatorial approach to

identify individual fairness violations in pre-trained ML
models. Our approach consists of two phases. In the first
phase, based on the training dataset, we develop an IPM,
derive constraints, and generate t-way test instances. In the
second phase, we identify fairness violations by perturbing the
t-way instances using a counterfactual approach. The key idea
is to generate counterfactuals by modifying the protected
attribute(s) while retaining the value of non-protected
attributes of the t-way test instance. We performed an
experimental evaluation of our approach using twelve ML
classifiers (4 ML classifiers * 3 datasets). Our results suggest
that our approach can successfully identify fairness violations

in ML models. Furthermore, our approach identifies a
substantial number of fairness violations for different ML
model classifiers. This suggests t-way tests are effective in
identifying biases introduced by both the training dataset and
the learning algorithm.

There are a few directions to continue our work. First, in
our current approach, for a categorical attribute, we identify
and map all its unique values as representative values in IPM.
A significantly large number of t-way tests cases will be
generated if the training dataset consists of a categorical
attribute(s) with many unique values. We plan to investigate
how to adapt the entropy-based discretization technique for
categorical attributes. Second, after we detect fairness
violations from a model, the next step is to identify the root
cause and modify and/or retrain the model to remove those
violations. We plan to explore how to leverage the t-way
instances that identified fairness violations for model
debugging and for model modification and retraining
activities. Third, we plan to extend this approach to identify
group discrimination in pre-trained ML models. Finally, we
plan to conduct more empirical studies to further evaluate the
effectiveness of our approach. In particular, we plan to
compare the effectiveness of our approach to existing
approaches such as the symbolic generation (SG) approach [1]
and the CGFT approach [17].

ACKNOWLEDGMENT
This work is supported by research grant

(70NANB21H092) from Information Technology Lab of
National Institute of Standards and Technology (NIST).

Disclaimer: Certain software products are identified in this
document. Such identification does not imply
recommendation by the NIST, nor does it imply that the
products identified are necessarily the best available for the
purpose.

REFERENCES
[1] Aggarwal, Aniya, et al. "Black box fairness testing of machine learning

models." Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2019

[2] Amazon scraps secret AI recruiting tool that showed bias against
women, https://www.reuters.com/article/us-amazon-com-jobs-
automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-
showed-bias-against-women-idUSKCN1MK08G, Accessed: 2022-01-
29

[3] Chakraborty, J., Xia, T., Fahid, F. M., & Menzies, T. (2019). Software
engineering for fairness: A case study with hyperparameter
optimization. arXiv preprint arXiv:1905.05786.

[4] Combinatorial Testing, https://csrc.nist.gov/Projects/automated-
combinatorial-testing-for-software, Accessed: 2022-01-24

[5] Bellamy, Rachel KE, et al. "AI Fairness 360: An extensible toolkit for
detecting, understanding, and mitigating unwanted algorithmic
bias." arXiv preprint arXiv:1810.01943 (2018).

[6] Kerber, R. (1992, July). Chimerge: Discretization of numeric
attributes. In Proceedings of the tenth national conference on Artificial
intelligence (pp. 123-128).

[7] Trusted-AI/AIF360: A comprehensive set of fairness measures for
datasets and machine learning models, https://github.com/Trusted-
AI/AIF360, Accessed: 2022-01-24

[8] Lime | discretize.py,
https://github.com/marcotcr/lime/blob/fd7eb2e6f760619c29fca0187c0
7b82157601b32/lime/discretize.py#L205, Accessed: 2022-01-23

[9] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should
i trust you?" Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 1135-1144).

[10] The Algorithm That Beats Your Bank Manager,
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-
that-beats-your-bank-manager/?sh=1b04a7be1ae9, Accessed: 2022-
01-29.

[11] Machine Bias – Propublica,
https://www.propublica.org/article/machine-bias-risk-assessments-in-
criminal-sentencing, Accessed: 2022-01-29.

[12] Miranda Bogen and Aaron Rieke. 2018. Help wanted: an examination
of hiring algorithms, equity. Technical Report. and bias. Technical
report, Upturn.

[13] Understanding Bias in AI-Enabled Hiring,
https://www.forbes.com/sites/forbeshumanresourcescouncil/2021/10/
14/understanding-bias-in-ai-enabled-hiring/?sh=190037757b96,
Accessed: 2022-01-29

[14] Yu, L., Lei, Y., Kacker, R. N., & Kuhn, D. R. (2013, March). Acts: A
combinatorial test generation tool. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation (pp. 370-
375). IEEE.

[15] Hort, M., Zhang, J. M., Sarro, F., & Harman, M. (2021, August).
Fairea: A model behaviour mutation approach to benchmarking bias
mitigation methods. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (pp. 994-1006).

[16] Patelankitar/tWayFairnessTesting,
https://github.com/patelankitar/tWayFairnessTesting, Accessed: 2022-
01-29.

[17] Morales, D. P., Kitamura, T., & Takada, S. (2021, February).
Coverage-Guided Fairness Testing. In International Conference on
Intelligence Science (pp. 183-199). Springer, Cham.

[18] Udeshi, S., Arora, P., & Chattopadhyay, S. (2018, September).
Automated directed fairness testing. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software
Engineering (pp. 98-108).

[19] Galhotra, S., Brun, Y., & Meliou, A. (2017, August). Fairness testing:
testing software for discrimination. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (pp. 498-510).

[20] Zhang, P., Wang, J., Sun, J., Dong, G., Wang, X., Wang, X., ... & Dai,
T. (2020, June). White-box fairness testing through adversarial
sampling. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (pp. 949-960).

[21] Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A.
(2021). A survey on bias and fairness in machine learning. ACM
Computing Surveys (CSUR), 54(6), 1-35.

[22] Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2020). Machine learning
testing: Survey, landscapes and horizons. IEEE Transactions on
Software Engineering.

[23] Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining
association rules between sets of items in large databases.
In Proceedings of the 1993 ACM SIGMOD international conference
on Management of data (pp. 207-216).

[24] Brun, Y., & Meliou, A. (2018, October). Software fairness.
In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (pp. 754-759).

[25] Burnett, M., Stumpf, S., Macbeth, J., Makri, S., Beckwith, L., Kwan,
I., ... & Jernigan, W. (2016). GenderMag: A method for evaluating
software's gender inclusiveness. Interacting with Computers, 28(6),
760-787.

[26] Zhang, J. M., & Harman, M. (2021, May). “Ignorance and Prejudice”
in Software Fairness. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE) (pp. 1436-1447). IEEE.

[27] Ledford, H. (2019). Millions of black people affected by racial bias in
health-care algorithms. Nature, 574(7780), 608-610.

[28] Housing Discrimination Under the Fair Housing Act|HUD,
https://www.hud.gov/program_offices/fair_housing_equal_opp/fair_h
ousing_act_overview, Acceessed: 2022-01-30

[29] UCI Machine Learning Repository: Adult Data Set |
https://archive.ics.uci.edu/ml/datasets/adult, Accessed: 2022-01-30

[30] UCI Machine Learning Repository: Statlog (German Credit Data) Data
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data),
Accessed: 2022-01-30

[31] Propublica/compas-analysis: Data and Analysis for ‘Machine Bias’ |
https://github.com/propublica/compas-analysis, Accessed: 2022-01-30

[32] Chakraborty, J., Majumder, S., Yu, Z., & Menzies, T. (2020,
November). Fairway: A way to build fair ml software. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (pp. 654-665)

[33] Hort, M., Zhang, J. M., Sarro, F., & Harman, M. (2021, August).
Fairea: A model behaviour mutation approach to benchmarking bias
mitigation methods. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (pp. 994-1006)

[34] Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S.,
Barbado, A., ... & Herrera, F. (2020). Explainable Artificial
Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Information Fusion, 58, 82-115.

[35] Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S.,
& Turini, F. (2019). Factual and counterfactual explanations for black
box decision making. IEEE Intelligent Systems, 34(6), 14-23.

[36] Mothilal, R. K., Sharma, A., & Tan, C. (2020, January). Explaining
machine learning classifiers through diverse counterfactual

explanations. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency(pp. 607-617).

[37] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. the Journal of machine Learning research, 12, 2825-2830.

[38] Sklearn.tree.DecisionTreeClassifier – scikit-learn-1.0.2, https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifie
r.html, Accessed: 2022-01-22

[39] Buolamwini, J., & Gebru, T. (2018, January). Gender shades:
Intersectional accuracy disparities in commercial gender classification.
In Conference on fairness, accountability and transparency (pp. 77-
91). PMLR

[40] Supervised Binning,
https://www.saedsayad.com/supervised_binning.htm, Accessed: 2022-
01-30

