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Abstract— Data mining algorithms are used to analyze and 
discover useful information from data. This paper presents an 
experiment that applies Combinatorial Testing (CT) to five data 
mining algorithms implemented in an open-source data mining 
software called WEKA. For each algorithm, we first run the 
algorithm with 51 datasets to study the impact different datasets 
have on the test coverage. We select one dataset that achieves the 
highest branch coverage. Next we construct positive and negative 
combinatorial test sets of configuration options and execute each 
test set with the selected dataset. Test effectiveness is measured 
using branch and mutation coverage. Our results suggest that 
when testing data mining algorithms: (1) larger datasets do not 
necessarily achieve higher coverage than smaller datasets; (2) test 
coverage increases progressively slower as test strength 
increases; and (3) branch coverage correlates well with mutation 
coverage. 

Keywords—Combinatorial Testing; Data mining; Machine 
learning; Input parameter modeling; Branch coverage; Mutation 
testing; 

 INTRODUCTION 
Big data applications are becoming more popular as large 

amounts of data are generated and collected in virtually every 
domain, e.g., e-commerce, social networking, and scientific 
computing [11,12]. These applications typically employ data 
mining algorithms to analyze data and discover useful 
information. Data mining algorithms include supervised 
learning algorithms, and un-supervised learning algorithms to 
perform tasks such as classification, clustering, association rule 
mining [36]. 

In this paper, we present an experiment that applies 
combinatorial testing (or CT) to software that implements data 
mining algorithms. Testing data mining algorithms has several 
challenges. First, data mining software typically involves 
complex computation and decision logic. This is because data 
mining algorithms can be quite sophisticated. Second, data 
mining software often deals with datasets that have complex 
structure. Thus, it can be difficult to model and characterize the 
input space. Third, many data mining algorithms are designed 
to process large amounts of data. However, it is impractical to 
test large amounts of data at the development stage when 
testing is frequently performed. In the remainder of this paper, 
we will refer to data mining algorithms and software that 

implements data mining algorithms simply as data mining 
algorithms, unless otherwise specified.  

The goal of our experiment is to evaluate the effectiveness 
of CT for testing data mining algorithms. In our experiment, 
we apply CT to five data mining algorithms implemented in 
the Waikato Environment for Knowledge Analysis (WEKA) 
tool. These five algorithms include C4.5, K-Means, SVM, 
Apriori and EM, and they are identified to be the top five most 
influential data mining algorithms by the IEEE International 
Conference on Data Mining (ICDM) [44]. Each algorithm 
takes two types of input, including a dataset to be analyzed, 
and configuration options that are used to customize the 
behavior of the algorithm. In our experiment, the input dataset 
for each algorithm was selected from a collection of 51 public 
benchmark datasets provided by WEKA and UC Irvine [32].  

To carry out our experiment, we first ran each algorithm 
with the default configuration on the 51 datasets to study the 
impact different datasets have on the test coverage, and 
selected one dataset that achieved the highest branch coverage. 
We then created an input parameter model (IPM) for the 
configuration options of each algorithm. An IPM consists of 
representative values of each configuration option as well as 
constraints that exist between these values. We performed both 
positive and negative testing of each algorithm using the 
selected dataset and the IPM of the configuration options. For 
positive testing, we created 1-way to 6-way test sets using the 
valid values in the IPM. For negative testing, we created a 1-
way test set for the invalid values in the IPM. In the 1-way 
negative test set, each invalid value is covered by one test in 
which every other value is a valid value. Test effectiveness is 
measured in terms of both branch coverage and mutation 
coverage. 

The major results of our experiment are summarized as 
follows: 

• Larger datasets do not necessarily achieve higher test 
coverage than smaller datasets. The sizes of the datasets 
that are applicable to each algorithm range from as few 
as 14 instances to as many as 20,000 instances. 
However, almost all of these datasets achieved similar 
branch coverage. In some cases, very small datasets 
achieved higher coverage than very large datasets. For 



example, for algorithm Apriori, the weather.nominal 
dataset has only 14 instances, but it achieved higher 
coverage than the mushroom dataset, which has 8124 
instances. This suggests that the size of a dataset is not a 
dominating factor in deciding test coverage. Other 
factors, e.g., structure of a dataset, and relationship 
between different instances, might play a more 
significant role.  

• Test coverage of CT test set increases progressively 
slower with respect to increase of test strength. In our 
experiment, test coverage increases more significantly 
when test strength increases from 1-way to 3-way. After 
4-way testing, higher strength test sets no longer provide 
significant coverage improvement. This result is 
consistent with the results of other empirical studies that 
apply CT to general software applications.  

• Branch coverage correlates well with mutation 
coverage. The results of our experiment suggest that in 
general, branch coverage correlates with mutation 
coverage. In particular, higher branch coverage often 
implies higher mutation coverage. This suggests that 
branch coverage could be used as a good indicator of 
fault detection effectiveness for data mining algorithms, 
since mutation coverage is expensive to measure. 

To the best of our knowledge, our work is the first attempt 
to evaluate the effectiveness of CT to data mining algorithms. 
In general, little work has been reported on testing data mining 
algorithms. We believe that our experiment provides initial 
insights that can be useful for developing more effective testing 
techniques for data mining algorithms. 

The remainder of this paper is organized as follows. 
Section II discusses the major design decisions made in our 
experiment. Section III presents the major results obtained 
from our experiment. Section IV briefly reviews related work, 
including existing work on CT and on testing data mining 
algorithms. Section VI provides our conclusion and outlines 
several directions for future work. 

 EXPERIMENTAL DESIGN 
In this section, we present the design of our experiments. 

We formulate our research questions, identify the subject 
algorithms and datasets, present our approach to Input 
Parameter Modeling (IPM) and test generation, and discuss 
the metrics used to measure test effectiveness. 

A. Research Question 
The goal of this project is to evaluate effectiveness of CT 

applied to data mining algorithms. We formulate the following 
research questions:  

1) How do different datasets impact test coverage? 
2) How effective is CT applied to data mining 

algorithms?  
3) Is branch coverage a good indicator of fault detection 

effectiveness?  

B. Subject Programs 
WEKA is one of the most widely used data mining tools.  

WEKA is developed by University of Waikato, and 
implements a collection of data mining algorithms as different 
packages. The subject programs include five data mining 
algorithms implemented in the WEKA tool: (1) C4.5, which is 
a supervised learning algorithm that takes a collection of cases 
as input, and output a classifier that predicts the class to which 
a new case belongs using decision tree[44]; (2) K-Means, 
which is an unsupervised learning algorithm that performs 
clustering by partitioning a given dataset into k clusters such 
that the members of each cluster are similar to each other; (3) 
SVM, which is a supervised learning algorithm that uses the 
vector space to build a SVM classification model. The model 
predicts the class to which a new case belongs; (4) Apriori, 
which is an unsupervised learning algorithm that generates 
association rules by identifying frequent item sets; and (5) EM, 
which is an unsupervised learning algorithm that uses 
statistical models to perform clustering. These five algorithms 
are identified to be the top five most influential data mining 
algorithms [44].  

Table I shows information about the WEKA packages that 
implement the five algorithm.  

TABLE I – WEKA PACKAGE INFORMATION  
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Apriori weka.associations 5 5 580 1349 12 11 
EM weka.clusterers 6 10 736 1825 14 46 

C4.5 weka.classifiers.tre
es.J48 

17 17 696 1641 17 44 

K-Means weka.clusterers 5 7 699 1721 18 46 
SVM libsvm 6 18 1124 2138 17 44 

    

C. Datasets 
We selected our datasets from a collection of 51 public 

benchmarking datasets provided by WEKA and UC Irvine 
[32]. Table II shows the statistics of the 51 subject datasets. 

Different algorithms require different types or formats of 
data. As a result, not every dataset is applicable to every 
algorithm. To determine the applicability of a dataset to a 
given algorithm, we run the dataset with the algorithm. A 
dataset is considered applicable to an algorithm if executing 
the dataset with the algorithm provides meaningful output 
without any exception. The number of applicable datasets for 
each algorithm is shown in the last column of Table I.  

 
TABLE II – DATASET INFORMATION 

 # of Attributes # of Instances Size in KB 
Maximum 217 20000 1978.39 
Minimum 2 14 0.483398 
Average 23.92157 1466.902 229.5591 
Standard Deviation 31.73506 3079.593 393.0123 
Median 18 604 44.82715 



D. Input Parameter Modeling  
Before CT is applied, we must create the input parameter 

model (IPM) [21]. Each subject algorithm takes two types of 
input, including a dataset to be analyzed, and a set of 
configuration options that are used to customize the behavior 
of the algorithm. Our experiment focuses on CT of 
configuration options. As mentioned in Section V, CT of 
datasets is left for future work. Thus our modeling process 
mainly consists of identifying representative values for 
different configuration options.  

In the following, we use the Apriori algorithm as an 
example to explain our approach. We categorize configuration 
options into two groups.  

• Group 1: This group includes options with a set of 
predefined choices. For each option in this group, 
every predefined choice is identified as a 
representative value for this option.  
Figure 1 shows some configuration options of the 
Apriori algorithm. Consider as an example option “-
T”, which is used to specify the metric type. This 
option has four predefined choices, Confidence, Lift, 
Conviction, and Leverage, each of which is identified 
to be a representative value for this option. 
 

 
Figure 2. Example Configuration Options for Apriori 

 
• Group 2: This group includes options that do not have 

a set of predefined choices. Instead, the user can input 
any value that is valid. For each option in this group, 
equivalence partitioning is used to identify 
representative values.  
We observe that in our subject programs, all the 
options in this group are of type Integer, Float, 
Double. We first identify boundary values that 
distinguish valid and invalid values, as shown in 
Figure 2. A boundary value itself may or may not be 
valid. In Figure 2, a square bracket indicates a valid 
boundary value, and a parenthesis indicates an invalid 
boundary value. Next, we partition valid and invalid 
values into different groups as needed, based on 
domain knowledge. The set of representative values 
include one representative value from every partition 
of valid and invalid values.  

 
 
 

 
Consider as an example the “- C” (minimum metric score) 

option in Fig. 1. This option allows the user to specify a 
threshold value for the selected metric type. Assume that the 
user chooses Confidence as the metric type, i.e., “-T 0 (Figure 
1)”. Based on domain knowledge, we identify the boundary 
values for minimum metric score as “0” and “1”.  

Next we identify the equivalence classes for valid and 
invalid values and select a representative value from each 
class. For valid values, we identify three equivalence classes: 
(1) {values that take every possible rule}, (2) {values that only 
take rules with 100% confidence}, and (3) {other values, i.e, 
values that do not take every possible rule, and do not require 
100% confidence for each rule}. The first class consists of a 
single value, i.e., 0. Similarly, the second class consists of a 
single value, i.e., 1. The third class includes every value that is 
greater than 0 and less than 1. Thus, we select the following 
three representative values, including 0, 1, and 0.9. Note that 
“0.9” is the default value of this option as shown in Figure 1. 
In general, the default value is selected as the representative 
value for the equivalence class that contains the default value. 
Doing so helps to reduce number of representative values 
identified for each parameter.  

For invalid values that are outside of the boundary values, 
we identify two equivalence classes: (1) {value | value < 
lower boundary}; and (2) {value | value > higher boundary}. 
A random value can be chosen from each of the two 
equivalence classes as the representative values. 

In addition to identifying representative values for each 
configuration option, we have also identified constraints 
between different values. Constraints are used to prevent 
ACTS [46] from generating invalid combinations. For 
example, in the Apriori algorithm, when option “-A” is true, 
the only allowed metric type “-T” is confidence, i.e., option “-
T” must take the value of 0. Table III shows the constraints 
that are identified for algorithm Apriori. 

 
TABLE III – CONSTRAINTS IDENTIFIED FOR APRIORI 

A = false => c = -1 
A = true => T = 0 
T = 0 => (T = 0.1 || C = 0.9) 
T = 1 && A = false => (M = 0.1 || M = 0.95) 
T = 1 || T = 3 => (T =1.1 || T = 1.5) 
T = 2 => (C = 0.1 || C = 0.5) 

E. Test Generation 
We performed both positive and negative testing in our 

experiments. For positive testing, we created test sets that 
achieve 1-way to 6-way coverage for valid values using the 
extend mode from ACTS. The extend mode allows a test set to 
be built by extending an existing test set. By using the extend 
mode, every higher strength test set will be the superset of its 
lower strength test set(s). For negative testing, we generated a 
test set that achieves 1-way coverage for invalid values. That 

-N <required number of rules output> 
  The required number of rules. (default = 10) 
  
-T <0=confidence | 1=lift | 2=leverage | 3=Conviction> 
  The metric type by which to rank rules. (default = 
confidence) 
  
-C <minimum metric score of a rule> 
  The minimum confidence of a rule. (default = 0.9) 
  
-c <the class index> 
  The class index. (default = last) 
 

 
Figure 1. Equivalence Partitioning for Group 2 Configuration Options 



is, each invalid value is covered by one and only one test in 
which every other value is a valid value. Note that in order to 
avoid potential mask effects, a negative test should contain at 
most one invalid value.  

 
TABLE IV – SIZES OF TEST SETS 

 Apriori EM J48 SimpleKMeans LibSVM 
1-way 7 3 4 4 5 
2-way 33 11 14 16 21 
3-way 132 37 48 49 76 
4-way 478 91 133 136 232 
5-way 1440 214 349 368 637 
6-way 4055 463 835 911 1546 
Negative 12 18 9 11 15 

 
We used ACTS to generate both positive and negative test 

sets. Table IV shows the sizes of test sets of different 
strengths. Since the representative values are abstract values, 
the tests generated by ACTS are abstract tests. These abstract 
tests need to be translated to concrete tests prior to execution. 
For example, consider the option, “-c”, representing Class 
Index, as shown in Figure 1. String “last” is an abstract value 
of this option that represents the last column (or attribute) of 
the input dataset. This abstract value must be mapped to the 
actual index of the last column in a dataset.  

For each algorithm, we have written a script that performs 
automatic translation from abstract tests to concrete tests. The 
corresponding concrete value of an abstract value is calculated 
based on the selected input dataset. For example, abstract 
value “last” for option, -c, the concrete value when executing 
weather.nominal dataset for Apriori will be set to the actual 
last index, “5”. 

F. Metrics 
In our experiments, we used branch coverage and mutation 

coverage to measure test effectiveness. We used JaCoCo to 
record branch coverage. JaCoCo is a free Eclipse plugin that 
measures statement and branch coverage at the byte code level 
[22]. 

We used an open-source mutation testing tool called PIT 
to measure mutation coverage [14]. We selected all available 
mutators that are provided by PIT for generating mutants. PIT 
uses JUnit tests to determine whether a mutant is killed. All 
JUnit tests must pass before PIT can be applied. We first ran 
each test case with the original programs and stored the output 
as the expected output. Then we created JUnit tests that check 
the actual output against the expected output. Whenever a 
passing JUnit test fails after executing a mutant, the mutant is 
considered killed.   

PIT uses timeout to kill mutants that may never terminate. 
That is, if the execution of a mutant times out, then the mutant 
is considered killed. In order to reduce test execution time 
while preventing premature termination, we set the timeout 
value differently for each test set as follows. We first recorded 
the normal execution time taken by every test in a test set on 
the original program. This allowed us to find the longest 
execution time of a test set. If the longest execution time t is 
less than or equal to 10 seconds, we set the timeout value of 

the test set to be t plus 10 seconds. Otherwise, we set the 
timeout value to be t plus 100 seconds.  

 EXPERIMENTAL RESULTS 
In this section, we present the results from our 

experiments. The coverage results for each algorithm are 
collected for the class files in the package that implement the 
algorithm, i.e., instead of every class file in the WEKA 
package. All the results and related files such as datafiles,  
scripts and experiment logs are publicly available at 
http://barbie.uta.edu/~hdfeng/. 

A. Impact of Datasets 
We executed each algorithm’s default configuration with 

the 51 datasets. Some datasets are not applicable to a given 
algorithm, e.g., due to incorrect data type, insufficient number 
of attributes, and missing data of attributes. Table I (Section 
II) shows the number of datasets that are applicable to each 
algorithm. 
 

TABLE V – BRANCH COVERAGE STATISTICS OF APPLICABLE DATASETS 
 Apriori EM J48 SimpleKMeans LibSVM 
Maximum 28.79% 37.64% 36.64% 21.89% 34.96% 
Minimum 26.72% 31.11% 8.33% 18.31% 20.46% 
Mean 27.98% 35.34% 30.07% 21.04% 30.35% 
Standard 
Deviation 0.68% 2.29% 4.8% 1.04% 3.77% 

Median 28.02% 36.41% 29.89% 21.6% 31.23% 
 
Table V presents some statistics about the branch coverage 

results of each selected algorithm with the applicable data sets. 
The results indicate that different datasets achieve similar 
coverage results despite significant differences in their sizes in 
terms of number of attributes and instances. Recall that as 
shown in Table II (Section II), some datasets contain as many 
as 20,000 instances while other datasets contain as few as 14 
instances. However, the standard deviations of the branch 
coverage results are generally less than 5% as shown in Table 
V. 

 
TABLE VI- APPLICABLE DATASETS FOR APRIORI 

Dataseta # of Attributes # of 
Instances 

Branch 
Coverage 

vote 17 435 28.79% 
weather.nominal 5 14 28.79% 
splice 62 3190 28.62% 
contact-lenses 5 24 28.28% 
breast-cancer 10 286 28.28% 
primary-tumor 18 339 27.76% 
soybean 36 683 27.59% 
supermarket 217 4627 27.59% 
kr-vs-kp 37 3196 27.41% 
mushroom 23 8124 26.72% 

a.  Only 10 datasets’ branch coverage are available instead of 11 as shown in TABLE I. Dataset 
audiology did not finish execution within 48 hours.  

.  

We point out that even some datasets have a very small 
number of instances, they can achieve higher branch coverage 
than the datasets with significantly more instances. Table VI 
shows the dataset and branch coverage information of the 
applicable datasets for the Apriori implementation. Consider 
dataset weather.nominal and mushroom. Dataset 



weather.nominal has only 5 attributes and 14 instances. 
Dataset mushroom has 23 attributes and 8124 instances. 
However, weather.nominal achieved higher coverage than 
mushroom. Similar situations exist for other algorithms, which 
are not shown due to space limitation.  

Based on the results of the 51 datasets for each algorithm, 
we selected one dataset that achieved the highest branch 
coverage for each algorithm for the rest of our experiment. If 
more than one dataset achieves the highest branch coverage, 
we break the tie by choosing the one with a smaller number of 
instances. For example, for Apriori, both vote and 
weather.nominal achieves the maximum branch coverage. To 
break the tie, we choose weather.nominal. The datasets 
selected for each algorithm are shown below;  

• Apriori – weather.nominal 
• EM – segment-challenge 
• J48 – credit-a 
• SimpleKMeans – iris.2D 
• LibSVM – primary-tumor  

B. Branch Coverage Results of T-Way Testing 
Table VII shows the branch coverage results of the seven 

test sets, including the negative test set, 1-way to 6-way 
positive test sets. Table VII also shows the branch coverage 
results for the default configuration as a baseline, and the 
branch coverage results that combine 6-way test and negative 
test. 

 
TABLE VII– BRANCH COVERAGE RESULTS OF T-WAY TESTING  

Test set Apriori EM J48 SimpleKM
eans 

LibSV
M 

Default 
Configuration 28.79% 37.64% 36.64% 21.89% 34.96% 

Negative 66.03% 50.54% 55.32% 66.24% 28.47% 
1-way 55.52% 52.99% 52.73% 59.51% 24.47% 
2-way 66.55% 53.80% 54.60% 69.53% 43.77% 
3-way 68.62% 53.94% 59.77% 70.39% 54.63% 
4-way 68.62% 53.94% 59.77% 70.39% 54.80% 
5-way 68.62% 54.08% 59.77% 70.39% 54.80% 
6-way 68.62% 54.08% 59.77% 70.39% 54.89% 
6-way 
&Negative 68.97% 55.3% 59.77% 70.67% 55.34% 

 
We observe that negative test sets achieve relatively high 

coverage, in comparison with positive t-way tests, for all the 
algorithms except LibSVM. One possible reason is that the 
validity of a configuration option value is not checked until it 
is used. Thus, in some cases, a significant amount of the 

source code could have been executed before the system 
detects this invalid value. We plan to investigate this further in 
our future work.  

We also observe that the total coverage achieved by 
combining the negative test set and the 6-way test set ranges 
from 55.34% to 70.67%. Other empirical studies [6, 7, 27, 29, 
30, 43] have reported that 6-way test sets could detect all the 
faults. We plan to investigate this further in our future work. 
The following factors could have contributed to the fact that 
our coverage results are less than expected:  

 
• Limited domain knowledge: In our experiments, we 

performed input parameter modeling based on our 
limited domain knowledge. The input parameter 
models could be refined to achieve higher branch 
coverage. 
  

• Testing only configuration options: In our 
experiments, CT is only applied to configuration 
options. That is, we did not test combinations 
between configuration options and different datasets. 

  
• Shared class files that contain unreachable code 

from implementations of other algorithms. In WEKA, 
multiple algorithms are implemented within the same 
package. For example, the weka.clusterers package 
contains implementations of eight different clustering 
algorithms, e.g., SimpleKMeans, EM, Canopy, etc. 
Some portions of source code may only be reachable 
when executing its corresponding algorithm. As an 
example, SimpleKmeans algorithm is a variant of 
EM algorithm with the assumptions that clusters are 
spherical. In WEKA, EM algorithm uses the 
SimpleKMeans class to complete its first few steps of 
the clustering tasks. But most source code of 
SimpleKMeans are not semantically reachable 
because EM is only using a static configuration of 
SimpleKMeans algorithm as specific in the EM class 
file.       

 

 
Figure 3 – Growth of Branch Coverage 

 
Figure 3 shows how branch coverage increases with 

respect to test strength. The result is consistent with previous 
studies [15, 28]. That is, the coverage grows progressively 

Finding 1: Larger datasets do not necessarily achieve 
higher branch coverage. In some cases, smaller datasets 
can achieve higher branch coverage than larger datasets.  
 
Implication 1: The size of a dataset is not a dominating 
factor for determining test effectiveness of a dataset. 
Instead, other characteristics must be considered, e.g., the 
dataset structure, and the relationship between different 
data instances. Also, it is possible to create small datasets 
that are effective for testing data mining algorithms.  
number of dataset instances, when reducing input datasets 



slower when test strength increases. Also, branch coverage 
stops increasing after 3-way testing for algorithms Apriori, 
J48, SimpleKMeans, and after 5-way testing for algorithms 
EM. For algorithm LibSVM, branch coverage continues to 
increase until 6-way testing as shown in Table VII.  

C. Mutation Coverage Results of T-Way Testing 
The mutation coverage results are unavailable for the 

following algorithms:  
• KMeans – PIT cannot execute for this algorithm, due 

to a bug that is confirmed by PIT developers. 
Discussion of this bug is publicly available at 
https://github.com/hcoles/pitest/issues/300.  

• EM – Mutation testing for EM was not able to 
complete within 48 hours due to the large number of 
mutators generated from the source code and the 
heavy computation of EM algorithm itself.  
  
TABLE VIII – MUTANTS GENERATED FOR EACH ALGORITHM 
Mutants Apriori J48 LibSVM 

ConditionalsBoundaryMutator 120 4% 113 3.11% 314 6.38% 
ConstructorCallMutator 186 6.2% 137 3.77% 140 2.85% 
experimental 104 3.47% 202 5.56% 204 4.15% 
IncrementsMutator 113 3.77% 91 2.5% 214 4.35% 
InlineConstantMutator 555 18.5% 488 13.43% 876 17.81% 
InvertNegsMutator 0 0% 1 0.03% 46 0.94% 
MathMutator 99 3.3% 213 5.86% 511 10.39% 
NegateConditionalsMutator 282 9.4% 348 9.57% 551 11.2% 
NonVoidMethodCallMutator 778 25.93% 984 27.07% 614 12.48% 
RemoveConditionalMutator 564 18.8% 696 19.15% 1102 22.41% 
ReturnValsMutator 112 3.73% 239 6.57% 131 2.66% 
VoidMethodCallMutator 87 2.9% 123 3.38% 215 4.37% 
Total 3000 100% 3635 100% 4918 100% 

 
Table VIII shows the number of mutants generated by 

each mutator. Some mutators are generating significantly 
more mutants than others as shown in Table VIII:  

• NonVoidMethodCallMutator: Incorrect method calls. 
• InLineConstantMutator: Assigning an incorrect 

constant value to a variable.  
• RemoveConditionalMutator: Incorrect conditional 

statements. “RemoveConditionalMutator” will change 
the conditions to a constant boolean value.  

For NegateConditionalsMutator, “RemoveConditional-
Mutator” and “ConditionalBoundaryMutator”, these three 
mutators focus on generating mutants at conditional 
statements of the program, and these three mutators together 
generates over 30% of the total mutants for the three 
algorithms that are shown in Table VIII.  

 

 
Figure 4 – Growth of Mutation Coverage 

 
Table VII shows that branch coverage stops growing after 

3-way testing for Apriori and J48. However, mutation 
coverage continues to grow for these two algorithms after 3-
way testing, as shown in Table IX. This is because executing a 
line or branch of code does not necessarily expose faults that 
exist in the code or branch, especially when the computation 
or decision logic is more complex. However, the increase in 
mutation coverage is not significant after 3-way testing.   

  
Table IX - MUTATION COVERAGE RESULTS OF T-WAY TESTING 

 Test set Apriori J48 LibSVM 
Default Configuration 31.53% 29.66% 26.11% 
Negative 59.9% 40.39% 19.46% 
1-way 45.27% 38.05% 14.99% 
2-way 60.93% 42.56% 32.61% 
3-way 64.1% 49.05% 42.72% 
4-way 64.47% 49.19% 43.19% 
5-way 64.5% 49.35% 43.19% 
6-way 64.53% 49.38% 43.21% 
6-way&Negative 64.63% 49.38% 44.02% 
 

Figure 4 plots the growth of mutation coverage with 
respect to test strength. The result is consistent with previous 
studies [15, 28] on branch coverage. Hence, Finding 2 and 
Implication 2 also apply to the coverage growth of mutation 
testing. The results of our experiment suggest that in general, 
branch coverage correlates well with mutation coverage. Thus, 
branch coverage could be used as a good indicator of fault 
detection effectiveness for data mining algorithms, since 
mutation coverage is expensive to measure.  

When we analyzed the results of mutation coverage for the 
individual files of each algorithm, we discovered two special 
cases where mutation coverage for “apriori.java” for the 
Apriori algorithm decreased by one mutant from 4-way to 5-
way and 6-way testing. As discussed in the Section II, the CT 
tests we created using ACTS used the extend mode. This 
means that every higher strength test set is a superset of its 
predecessor. Consequently, branch coverage and mutation 
coverage should not decrease from a lower strength test set to 
a higher strength test set. We have informed the lead 

Finding 2: Branch coverage increases progressively 
slower as test strength increases. The coverage increase 
stops at a test strength that is relatively low.  
 
Implication 2: During CT, data mining algorithms 
display similar behavior as general software applications. 
CT has the potential to be effective for testing data 
mining algorithms.   



developer of PIT with this issue, but the exact cause has not 
been successfully identified. 

D. Threats to Validity 
Threats to external validity occur when the experimental 

results could not be generalized to other subjects. Our subject 
programs implement the top five data mining algorithms 
identified in [44] and are from a widely used data mining tool, 
i.e., WEKA. The datasets used in our experiments have been 
used in other studies [32]. More experiments using data 
mining algorithms other than these five algorithms and using 
different datasets can further reduce threats to external 
validity. 

Threats to internal validity are other factors that may be 
responsible for the experimental results. To prevent mistakes 
that could happen during the modeling process, two of the 
authors created the IPM independently and cross-checked 
them against each other. We have automated the execution of 
experiments using scripts, as an effort to minimize human 
errors. Furthermore, consistency of the results (executed by 
scripts) has been checked by two of the authors using their 
independently written scripts.  

 RELATED WORK 
We first review previous work on applying CT to different 

types of software. Lei et al. [30] developed a t-way testing 
strategy for testing concurrent programs. Simos et al. [40] and 
Bozic et al. applied CT to perform security testing of web 
applications [6]. Li et al. applied CT to test three real-life 
industrial software systems that include an embedded system, 
a graphical operating system and a database management 
system [35]. Dhadyalla et al. applied CT to test automotive 
control software embedded in a hybrid electric vehicle [16]. Li 
et al. applied CT to ETL applications [34]. Note that ETL is a 
special type of big data applications. However, the work in 
[34] focuses on data transformation and management aspects, 
whereas our work focuses on algorithmic aspects. These 
existing works show that CT can be effectively applied to 
different domains. However, to our knowledge, our work is 
the first one that applies CT to data mining algorithms.  

Second, we review existing work related to evaluating the 
effectiveness of CT. Khun et al. [31] investigated the fault 
detection effectiveness of t-way testing. Kuhn et al. [27] report 
a study that applies CT and random testing to detect deadlocks 
in a network simulator. Bell and Vouk discussed the 
effectiveness of pairwise testing and random testing to a 
network-centric software [2]. A number of studies have been 

reported that compares the effectiveness of CT and random 
testing [1, 5, 7, 17, 25, 41, 42]. There are also studies that 
investigate the code coverage effectiveness of t-way testing 
[13, 15]. Our work presented in this paper is the first effort to 
evaluate the effectiveness of CT to data mining algorithms. 

Third, we review previous work related to testing data 
mining applications. Jeske et al. [24] developed a platform to 
generate realistic, synthetic data to test data mining tools. Data 
mining tools were evaluated in terms of their false positive 
and false negative error rates when executed with the synthetic 
data. Murphy et al. discussed how to identify metamorphic 
properties for performing metamorphic testing of data mining 
algorithms [38]. Metamorphic testing is one approach to 
addressing the test oracle problem. Murphy et al. [37] 
discussed approaches to test machine-learning applications 
that implement ranking algorithms. Our work is different in 
that we apply CT to test data mining algorithms. 

Finally, we note that a significant amount of work has 
been reported on testing database centric applications [3, 8, 9, 
10, 18, 33, 45]. Similar to work presented in [34], these work 
focuses on testing data management aspects. In contrast, our 
work focuses on the algorithmic aspects of data mining 
software.  

 CONCLUSION AND FUTURE WORK 
In this paper, we reported an experiment that applied CT to 

five data mining algorithms implemented in the WEKA tool. 
This is part of a larger effort that is aimed to develop effective 
CT-based methods for testing big data applications. The 
experiment allows us to obtain some initial understandings 
about the effectiveness of CT on data mining algorithms. In 
particular, the results of our experiment indicate that data 
mining algorithms behave in a way that is similar to general 
software. This suggests that CT has the potential to be 
effectively applied to data mining algorithms. 

We plan to continue our work in the following three 
directions. First, we will perform detailed code analysis to 
better understand the results of our experiment. In particular, 
we want to investigate why some branches were executed by 
none of our test sets, and whether these branches could be 
executed by using different configuration options and/or 
datasets. Second, in our experiment, we only applied CT to 
configuration options. We plan to investigate how to apply CT 
to create representative datasets. The key challenge is to 
identify the characteristics of a dataset that could significantly 
impact the execution of the underlying algorithm. We can 
model these characteristics as abstract parameters, and then 
apply CT to these parameters to create representative datasets. 
Third, negative testing alone has shown great importance in 
achieving good coverage, we will perform further 
investigation and experiments on how we can better use 
negative testing to improve the coverage of CT [20].  
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Finding 3: Branch coverage and mutation coverage seem 
to correlate well for data mining algorithms. That is, 
higher branch coverage seems to imply higher mutation 
coverage, and vice versa. 
 
Implication 3: Branch coverage could be used as a good 
indicator of fault detection effectiveness for data mining 
algorithms, since mutation coverage is expensive to 
measure.  



 
Disclaimer:  Certain software products are identified in 

this document. Such identification does not imply 
recommendation by the NIST, nor does it imply that the 
products identified are necessarily the best available for the 
purpose. 
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