
Applying Combinatorial Testing to Data Mining
Algorithms

Jaganmohan Chandrasekaran, Huadong Feng, Yu Lei
Department of Computer Science & Engineering

University of Texas at Arlington
Arlington, USA

{jaganmohan.chandrasekaran, huadong.feng}@mavs.uta.edu,
ylei@cse.uta.edu

D. Richard Kuhn, Raghu Kacker
Information Technology Lab

National Institute of Standards and Technology
Gaithersburg, USA

{khun, raghu.kacker}@nist.gov

Abstract— Data mining algorithms are used to analyze and
discover useful information from data. This paper presents an
experiment that applies Combinatorial Testing (CT) to five data
mining algorithms implemented in an open-source data mining
software called WEKA. For each algorithm, we first run the
algorithm with 51 datasets to study the impact different datasets
have on the test coverage. We select one dataset that achieves the
highest branch coverage. Next we construct positive and negative
combinatorial test sets of configuration options and execute each
test set with the selected dataset. Test effectiveness is measured
using branch and mutation coverage. Our results suggest that
when testing data mining algorithms: (1) larger datasets do not
necessarily achieve higher coverage than smaller datasets; (2) test
coverage increases progressively slower as test strength
increases; and (3) branch coverage correlates well with mutation
coverage.

Keywords—Combinatorial Testing; Data mining; Machine
learning; Input parameter modeling; Branch coverage; Mutation
testing;

 INTRODUCTION
Big data applications are becoming more popular as large

amounts of data are generated and collected in virtually every
domain, e.g., e-commerce, social networking, and scientific
computing [11,12]. These applications typically employ data
mining algorithms to analyze data and discover useful
information. Data mining algorithms include supervised
learning algorithms, and un-supervised learning algorithms to
perform tasks such as classification, clustering, association rule
mining [36].

In this paper, we present an experiment that applies
combinatorial testing (or CT) to software that implements data
mining algorithms. Testing data mining algorithms has several
challenges. First, data mining software typically involves
complex computation and decision logic. This is because data
mining algorithms can be quite sophisticated. Second, data
mining software often deals with datasets that have complex
structure. Thus, it can be difficult to model and characterize the
input space. Third, many data mining algorithms are designed
to process large amounts of data. However, it is impractical to
test large amounts of data at the development stage when
testing is frequently performed. In the remainder of this paper,
we will refer to data mining algorithms and software that

implements data mining algorithms simply as data mining
algorithms, unless otherwise specified.

The goal of our experiment is to evaluate the effectiveness
of CT for testing data mining algorithms. In our experiment,
we apply CT to five data mining algorithms implemented in
the Waikato Environment for Knowledge Analysis (WEKA)
tool. These five algorithms include C4.5, K-Means, SVM,
Apriori and EM, and they are identified to be the top five most
influential data mining algorithms by the IEEE International
Conference on Data Mining (ICDM) [44]. Each algorithm
takes two types of input, including a dataset to be analyzed,
and configuration options that are used to customize the
behavior of the algorithm. In our experiment, the input dataset
for each algorithm was selected from a collection of 51 public
benchmark datasets provided by WEKA and UC Irvine [32].

To carry out our experiment, we first ran each algorithm
with the default configuration on the 51 datasets to study the
impact different datasets have on the test coverage, and
selected one dataset that achieved the highest branch coverage.
We then created an input parameter model (IPM) for the
configuration options of each algorithm. An IPM consists of
representative values of each configuration option as well as
constraints that exist between these values. We performed both
positive and negative testing of each algorithm using the
selected dataset and the IPM of the configuration options. For
positive testing, we created 1-way to 6-way test sets using the
valid values in the IPM. For negative testing, we created a 1-
way test set for the invalid values in the IPM. In the 1-way
negative test set, each invalid value is covered by one test in
which every other value is a valid value. Test effectiveness is
measured in terms of both branch coverage and mutation
coverage.

The major results of our experiment are summarized as
follows:

• Larger datasets do not necessarily achieve higher test
coverage than smaller datasets. The sizes of the datasets
that are applicable to each algorithm range from as few
as 14 instances to as many as 20,000 instances.
However, almost all of these datasets achieved similar
branch coverage. In some cases, very small datasets
achieved higher coverage than very large datasets. For

example, for algorithm Apriori, the weather.nominal
dataset has only 14 instances, but it achieved higher
coverage than the mushroom dataset, which has 8124
instances. This suggests that the size of a dataset is not a
dominating factor in deciding test coverage. Other
factors, e.g., structure of a dataset, and relationship
between different instances, might play a more
significant role.

• Test coverage of CT test set increases progressively
slower with respect to increase of test strength. In our
experiment, test coverage increases more significantly
when test strength increases from 1-way to 3-way. After
4-way testing, higher strength test sets no longer provide
significant coverage improvement. This result is
consistent with the results of other empirical studies that
apply CT to general software applications.

• Branch coverage correlates well with mutation
coverage. The results of our experiment suggest that in
general, branch coverage correlates with mutation
coverage. In particular, higher branch coverage often
implies higher mutation coverage. This suggests that
branch coverage could be used as a good indicator of
fault detection effectiveness for data mining algorithms,
since mutation coverage is expensive to measure.

To the best of our knowledge, our work is the first attempt
to evaluate the effectiveness of CT to data mining algorithms.
In general, little work has been reported on testing data mining
algorithms. We believe that our experiment provides initial
insights that can be useful for developing more effective testing
techniques for data mining algorithms.

The remainder of this paper is organized as follows.
Section II discusses the major design decisions made in our
experiment. Section III presents the major results obtained
from our experiment. Section IV briefly reviews related work,
including existing work on CT and on testing data mining
algorithms. Section VI provides our conclusion and outlines
several directions for future work.

 EXPERIMENTAL DESIGN
In this section, we present the design of our experiments.

We formulate our research questions, identify the subject
algorithms and datasets, present our approach to Input
Parameter Modeling (IPM) and test generation, and discuss
the metrics used to measure test effectiveness.

A. Research Question
The goal of this project is to evaluate effectiveness of CT

applied to data mining algorithms. We formulate the following
research questions:

1) How do different datasets impact test coverage?
2) How effective is CT applied to data mining

algorithms?
3) Is branch coverage a good indicator of fault detection

effectiveness?

B. Subject Programs
WEKA is one of the most widely used data mining tools.

WEKA is developed by University of Waikato, and
implements a collection of data mining algorithms as different
packages. The subject programs include five data mining
algorithms implemented in the WEKA tool: (1) C4.5, which is
a supervised learning algorithm that takes a collection of cases
as input, and output a classifier that predicts the class to which
a new case belongs using decision tree[44]; (2) K-Means,
which is an unsupervised learning algorithm that performs
clustering by partitioning a given dataset into k clusters such
that the members of each cluster are similar to each other; (3)
SVM, which is a supervised learning algorithm that uses the
vector space to build a SVM classification model. The model
predicts the class to which a new case belongs; (4) Apriori,
which is an unsupervised learning algorithm that generates
association rules by identifying frequent item sets; and (5) EM,
which is an unsupervised learning algorithm that uses
statistical models to perform clustering. These five algorithms
are identified to be the top five most influential data mining
algorithms [44].

Table I shows information about the WEKA packages that
implement the five algorithm.

TABLE I – WEKA PACKAGE INFORMATION
A

lg
or

ith
m

 N
am

e

Pa
ck

ag
e

N
am

e
in

W

E
K

A

of

 F
ile

s

of

 C
la

ss
es

of

 B
ra

nc
he

s

L
O

C

of

 C
on

fig
ur

at
io

n
Pa

ra
m

et
er

s

of

 A
pp

lic
ab

le

D
at

as
et

s

Apriori weka.associations 5 5 580 1349 12 11
EM weka.clusterers 6 10 736 1825 14 46

C4.5 weka.classifiers.tre
es.J48

17 17 696 1641 17 44

K-Means weka.clusterers 5 7 699 1721 18 46
SVM libsvm 6 18 1124 2138 17 44

C. Datasets
We selected our datasets from a collection of 51 public

benchmarking datasets provided by WEKA and UC Irvine
[32]. Table II shows the statistics of the 51 subject datasets.

Different algorithms require different types or formats of
data. As a result, not every dataset is applicable to every
algorithm. To determine the applicability of a dataset to a
given algorithm, we run the dataset with the algorithm. A
dataset is considered applicable to an algorithm if executing
the dataset with the algorithm provides meaningful output
without any exception. The number of applicable datasets for
each algorithm is shown in the last column of Table I.

TABLE II – DATASET INFORMATION

 # of Attributes # of Instances Size in KB
Maximum 217 20000 1978.39
Minimum 2 14 0.483398
Average 23.92157 1466.902 229.5591
Standard Deviation 31.73506 3079.593 393.0123
Median 18 604 44.82715

D. Input Parameter Modeling
Before CT is applied, we must create the input parameter

model (IPM) [21]. Each subject algorithm takes two types of
input, including a dataset to be analyzed, and a set of
configuration options that are used to customize the behavior
of the algorithm. Our experiment focuses on CT of
configuration options. As mentioned in Section V, CT of
datasets is left for future work. Thus our modeling process
mainly consists of identifying representative values for
different configuration options.

In the following, we use the Apriori algorithm as an
example to explain our approach. We categorize configuration
options into two groups.

• Group 1: This group includes options with a set of
predefined choices. For each option in this group,
every predefined choice is identified as a
representative value for this option.
Figure 1 shows some configuration options of the
Apriori algorithm. Consider as an example option “-
T”, which is used to specify the metric type. This
option has four predefined choices, Confidence, Lift,
Conviction, and Leverage, each of which is identified
to be a representative value for this option.

Figure 2. Example Configuration Options for Apriori

• Group 2: This group includes options that do not have

a set of predefined choices. Instead, the user can input
any value that is valid. For each option in this group,
equivalence partitioning is used to identify
representative values.
We observe that in our subject programs, all the
options in this group are of type Integer, Float,
Double. We first identify boundary values that
distinguish valid and invalid values, as shown in
Figure 2. A boundary value itself may or may not be
valid. In Figure 2, a square bracket indicates a valid
boundary value, and a parenthesis indicates an invalid
boundary value. Next, we partition valid and invalid
values into different groups as needed, based on
domain knowledge. The set of representative values
include one representative value from every partition
of valid and invalid values.

Consider as an example the “- C” (minimum metric score)

option in Fig. 1. This option allows the user to specify a
threshold value for the selected metric type. Assume that the
user chooses Confidence as the metric type, i.e., “-T 0 (Figure
1)”. Based on domain knowledge, we identify the boundary
values for minimum metric score as “0” and “1”.

Next we identify the equivalence classes for valid and
invalid values and select a representative value from each
class. For valid values, we identify three equivalence classes:
(1) {values that take every possible rule}, (2) {values that only
take rules with 100% confidence}, and (3) {other values, i.e,
values that do not take every possible rule, and do not require
100% confidence for each rule}. The first class consists of a
single value, i.e., 0. Similarly, the second class consists of a
single value, i.e., 1. The third class includes every value that is
greater than 0 and less than 1. Thus, we select the following
three representative values, including 0, 1, and 0.9. Note that
“0.9” is the default value of this option as shown in Figure 1.
In general, the default value is selected as the representative
value for the equivalence class that contains the default value.
Doing so helps to reduce number of representative values
identified for each parameter.

For invalid values that are outside of the boundary values,
we identify two equivalence classes: (1) {value | value <
lower boundary}; and (2) {value | value > higher boundary}.
A random value can be chosen from each of the two
equivalence classes as the representative values.

In addition to identifying representative values for each
configuration option, we have also identified constraints
between different values. Constraints are used to prevent
ACTS [46] from generating invalid combinations. For
example, in the Apriori algorithm, when option “-A” is true,
the only allowed metric type “-T” is confidence, i.e., option “-
T” must take the value of 0. Table III shows the constraints
that are identified for algorithm Apriori.

TABLE III – CONSTRAINTS IDENTIFIED FOR APRIORI

A = false => c = -1
A = true => T = 0
T = 0 => (T = 0.1 || C = 0.9)
T = 1 && A = false => (M = 0.1 || M = 0.95)
T = 1 || T = 3 => (T =1.1 || T = 1.5)
T = 2 => (C = 0.1 || C = 0.5)

E. Test Generation
We performed both positive and negative testing in our

experiments. For positive testing, we created test sets that
achieve 1-way to 6-way coverage for valid values using the
extend mode from ACTS. The extend mode allows a test set to
be built by extending an existing test set. By using the extend
mode, every higher strength test set will be the superset of its
lower strength test set(s). For negative testing, we generated a
test set that achieves 1-way coverage for invalid values. That

-N <required number of rules output>
 The required number of rules. (default = 10)

-T <0=confidence | 1=lift | 2=leverage | 3=Conviction>
 The metric type by which to rank rules. (default =
confidence)

-C <minimum metric score of a rule>
 The minimum confidence of a rule. (default = 0.9)

-c <the class index>
 The class index. (default = last)

Figure 1. Equivalence Partitioning for Group 2 Configuration Options

is, each invalid value is covered by one and only one test in
which every other value is a valid value. Note that in order to
avoid potential mask effects, a negative test should contain at
most one invalid value.

TABLE IV – SIZES OF TEST SETS

 Apriori EM J48 SimpleKMeans LibSVM
1-way 7 3 4 4 5
2-way 33 11 14 16 21
3-way 132 37 48 49 76
4-way 478 91 133 136 232
5-way 1440 214 349 368 637
6-way 4055 463 835 911 1546
Negative 12 18 9 11 15

We used ACTS to generate both positive and negative test

sets. Table IV shows the sizes of test sets of different
strengths. Since the representative values are abstract values,
the tests generated by ACTS are abstract tests. These abstract
tests need to be translated to concrete tests prior to execution.
For example, consider the option, “-c”, representing Class
Index, as shown in Figure 1. String “last” is an abstract value
of this option that represents the last column (or attribute) of
the input dataset. This abstract value must be mapped to the
actual index of the last column in a dataset.

For each algorithm, we have written a script that performs
automatic translation from abstract tests to concrete tests. The
corresponding concrete value of an abstract value is calculated
based on the selected input dataset. For example, abstract
value “last” for option, -c, the concrete value when executing
weather.nominal dataset for Apriori will be set to the actual
last index, “5”.

F. Metrics
In our experiments, we used branch coverage and mutation

coverage to measure test effectiveness. We used JaCoCo to
record branch coverage. JaCoCo is a free Eclipse plugin that
measures statement and branch coverage at the byte code level
[22].

We used an open-source mutation testing tool called PIT
to measure mutation coverage [14]. We selected all available
mutators that are provided by PIT for generating mutants. PIT
uses JUnit tests to determine whether a mutant is killed. All
JUnit tests must pass before PIT can be applied. We first ran
each test case with the original programs and stored the output
as the expected output. Then we created JUnit tests that check
the actual output against the expected output. Whenever a
passing JUnit test fails after executing a mutant, the mutant is
considered killed.

PIT uses timeout to kill mutants that may never terminate.
That is, if the execution of a mutant times out, then the mutant
is considered killed. In order to reduce test execution time
while preventing premature termination, we set the timeout
value differently for each test set as follows. We first recorded
the normal execution time taken by every test in a test set on
the original program. This allowed us to find the longest
execution time of a test set. If the longest execution time t is
less than or equal to 10 seconds, we set the timeout value of

the test set to be t plus 10 seconds. Otherwise, we set the
timeout value to be t plus 100 seconds.

 EXPERIMENTAL RESULTS
In this section, we present the results from our

experiments. The coverage results for each algorithm are
collected for the class files in the package that implement the
algorithm, i.e., instead of every class file in the WEKA
package. All the results and related files such as datafiles,
scripts and experiment logs are publicly available at
http://barbie.uta.edu/~hdfeng/.

A. Impact of Datasets
We executed each algorithm’s default configuration with

the 51 datasets. Some datasets are not applicable to a given
algorithm, e.g., due to incorrect data type, insufficient number
of attributes, and missing data of attributes. Table I (Section
II) shows the number of datasets that are applicable to each
algorithm.

TABLE V – BRANCH COVERAGE STATISTICS OF APPLICABLE DATASETS
 Apriori EM J48 SimpleKMeans LibSVM
Maximum 28.79% 37.64% 36.64% 21.89% 34.96%
Minimum 26.72% 31.11% 8.33% 18.31% 20.46%
Mean 27.98% 35.34% 30.07% 21.04% 30.35%
Standard
Deviation 0.68% 2.29% 4.8% 1.04% 3.77%

Median 28.02% 36.41% 29.89% 21.6% 31.23%

Table V presents some statistics about the branch coverage

results of each selected algorithm with the applicable data sets.
The results indicate that different datasets achieve similar
coverage results despite significant differences in their sizes in
terms of number of attributes and instances. Recall that as
shown in Table II (Section II), some datasets contain as many
as 20,000 instances while other datasets contain as few as 14
instances. However, the standard deviations of the branch
coverage results are generally less than 5% as shown in Table
V.

TABLE VI- APPLICABLE DATASETS FOR APRIORI

Dataseta # of Attributes # of
Instances

Branch
Coverage

vote 17 435 28.79%
weather.nominal 5 14 28.79%
splice 62 3190 28.62%
contact-lenses 5 24 28.28%
breast-cancer 10 286 28.28%
primary-tumor 18 339 27.76%
soybean 36 683 27.59%
supermarket 217 4627 27.59%
kr-vs-kp 37 3196 27.41%
mushroom 23 8124 26.72%

a. Only 10 datasets’ branch coverage are available instead of 11 as shown in TABLE I. Dataset
audiology did not finish execution within 48 hours.

.

We point out that even some datasets have a very small
number of instances, they can achieve higher branch coverage
than the datasets with significantly more instances. Table VI
shows the dataset and branch coverage information of the
applicable datasets for the Apriori implementation. Consider
dataset weather.nominal and mushroom. Dataset

weather.nominal has only 5 attributes and 14 instances.
Dataset mushroom has 23 attributes and 8124 instances.
However, weather.nominal achieved higher coverage than
mushroom. Similar situations exist for other algorithms, which
are not shown due to space limitation.

Based on the results of the 51 datasets for each algorithm,
we selected one dataset that achieved the highest branch
coverage for each algorithm for the rest of our experiment. If
more than one dataset achieves the highest branch coverage,
we break the tie by choosing the one with a smaller number of
instances. For example, for Apriori, both vote and
weather.nominal achieves the maximum branch coverage. To
break the tie, we choose weather.nominal. The datasets
selected for each algorithm are shown below;

• Apriori – weather.nominal
• EM – segment-challenge
• J48 – credit-a
• SimpleKMeans – iris.2D
• LibSVM – primary-tumor

B. Branch Coverage Results of T-Way Testing
Table VII shows the branch coverage results of the seven

test sets, including the negative test set, 1-way to 6-way
positive test sets. Table VII also shows the branch coverage
results for the default configuration as a baseline, and the
branch coverage results that combine 6-way test and negative
test.

TABLE VII– BRANCH COVERAGE RESULTS OF T-WAY TESTING

Test set Apriori EM J48 SimpleKM
eans

LibSV
M

Default
Configuration 28.79% 37.64% 36.64% 21.89% 34.96%

Negative 66.03% 50.54% 55.32% 66.24% 28.47%
1-way 55.52% 52.99% 52.73% 59.51% 24.47%
2-way 66.55% 53.80% 54.60% 69.53% 43.77%
3-way 68.62% 53.94% 59.77% 70.39% 54.63%
4-way 68.62% 53.94% 59.77% 70.39% 54.80%
5-way 68.62% 54.08% 59.77% 70.39% 54.80%
6-way 68.62% 54.08% 59.77% 70.39% 54.89%
6-way
&Negative 68.97% 55.3% 59.77% 70.67% 55.34%

We observe that negative test sets achieve relatively high

coverage, in comparison with positive t-way tests, for all the
algorithms except LibSVM. One possible reason is that the
validity of a configuration option value is not checked until it
is used. Thus, in some cases, a significant amount of the

source code could have been executed before the system
detects this invalid value. We plan to investigate this further in
our future work.

We also observe that the total coverage achieved by
combining the negative test set and the 6-way test set ranges
from 55.34% to 70.67%. Other empirical studies [6, 7, 27, 29,
30, 43] have reported that 6-way test sets could detect all the
faults. We plan to investigate this further in our future work.
The following factors could have contributed to the fact that
our coverage results are less than expected:

• Limited domain knowledge: In our experiments, we

performed input parameter modeling based on our
limited domain knowledge. The input parameter
models could be refined to achieve higher branch
coverage.

• Testing only configuration options: In our
experiments, CT is only applied to configuration
options. That is, we did not test combinations
between configuration options and different datasets.

• Shared class files that contain unreachable code

from implementations of other algorithms. In WEKA,
multiple algorithms are implemented within the same
package. For example, the weka.clusterers package
contains implementations of eight different clustering
algorithms, e.g., SimpleKMeans, EM, Canopy, etc.
Some portions of source code may only be reachable
when executing its corresponding algorithm. As an
example, SimpleKmeans algorithm is a variant of
EM algorithm with the assumptions that clusters are
spherical. In WEKA, EM algorithm uses the
SimpleKMeans class to complete its first few steps of
the clustering tasks. But most source code of
SimpleKMeans are not semantically reachable
because EM is only using a static configuration of
SimpleKMeans algorithm as specific in the EM class
file.

Figure 3 – Growth of Branch Coverage

Figure 3 shows how branch coverage increases with

respect to test strength. The result is consistent with previous
studies [15, 28]. That is, the coverage grows progressively

Finding 1: Larger datasets do not necessarily achieve
higher branch coverage. In some cases, smaller datasets
can achieve higher branch coverage than larger datasets.

Implication 1: The size of a dataset is not a dominating
factor for determining test effectiveness of a dataset.
Instead, other characteristics must be considered, e.g., the
dataset structure, and the relationship between different
data instances. Also, it is possible to create small datasets
that are effective for testing data mining algorithms.
number of dataset instances, when reducing input datasets

slower when test strength increases. Also, branch coverage
stops increasing after 3-way testing for algorithms Apriori,
J48, SimpleKMeans, and after 5-way testing for algorithms
EM. For algorithm LibSVM, branch coverage continues to
increase until 6-way testing as shown in Table VII.

C. Mutation Coverage Results of T-Way Testing
The mutation coverage results are unavailable for the

following algorithms:
• KMeans – PIT cannot execute for this algorithm, due

to a bug that is confirmed by PIT developers.
Discussion of this bug is publicly available at
https://github.com/hcoles/pitest/issues/300.

• EM – Mutation testing for EM was not able to
complete within 48 hours due to the large number of
mutators generated from the source code and the
heavy computation of EM algorithm itself.

TABLE VIII – MUTANTS GENERATED FOR EACH ALGORITHM
Mutants Apriori J48 LibSVM

ConditionalsBoundaryMutator 120 4% 113 3.11% 314 6.38%
ConstructorCallMutator 186 6.2% 137 3.77% 140 2.85%
experimental 104 3.47% 202 5.56% 204 4.15%
IncrementsMutator 113 3.77% 91 2.5% 214 4.35%
InlineConstantMutator 555 18.5% 488 13.43% 876 17.81%
InvertNegsMutator 0 0% 1 0.03% 46 0.94%
MathMutator 99 3.3% 213 5.86% 511 10.39%
NegateConditionalsMutator 282 9.4% 348 9.57% 551 11.2%
NonVoidMethodCallMutator 778 25.93% 984 27.07% 614 12.48%
RemoveConditionalMutator 564 18.8% 696 19.15% 1102 22.41%
ReturnValsMutator 112 3.73% 239 6.57% 131 2.66%
VoidMethodCallMutator 87 2.9% 123 3.38% 215 4.37%
Total 3000 100% 3635 100% 4918 100%

Table VIII shows the number of mutants generated by

each mutator. Some mutators are generating significantly
more mutants than others as shown in Table VIII:

• NonVoidMethodCallMutator: Incorrect method calls.
• InLineConstantMutator: Assigning an incorrect

constant value to a variable.
• RemoveConditionalMutator: Incorrect conditional

statements. “RemoveConditionalMutator” will change
the conditions to a constant boolean value.

For NegateConditionalsMutator, “RemoveConditional-
Mutator” and “ConditionalBoundaryMutator”, these three
mutators focus on generating mutants at conditional
statements of the program, and these three mutators together
generates over 30% of the total mutants for the three
algorithms that are shown in Table VIII.

Figure 4 – Growth of Mutation Coverage

Table VII shows that branch coverage stops growing after

3-way testing for Apriori and J48. However, mutation
coverage continues to grow for these two algorithms after 3-
way testing, as shown in Table IX. This is because executing a
line or branch of code does not necessarily expose faults that
exist in the code or branch, especially when the computation
or decision logic is more complex. However, the increase in
mutation coverage is not significant after 3-way testing.

Table IX - MUTATION COVERAGE RESULTS OF T-WAY TESTING

 Test set Apriori J48 LibSVM
Default Configuration 31.53% 29.66% 26.11%
Negative 59.9% 40.39% 19.46%
1-way 45.27% 38.05% 14.99%
2-way 60.93% 42.56% 32.61%
3-way 64.1% 49.05% 42.72%
4-way 64.47% 49.19% 43.19%
5-way 64.5% 49.35% 43.19%
6-way 64.53% 49.38% 43.21%
6-way&Negative 64.63% 49.38% 44.02%

Figure 4 plots the growth of mutation coverage with
respect to test strength. The result is consistent with previous
studies [15, 28] on branch coverage. Hence, Finding 2 and
Implication 2 also apply to the coverage growth of mutation
testing. The results of our experiment suggest that in general,
branch coverage correlates well with mutation coverage. Thus,
branch coverage could be used as a good indicator of fault
detection effectiveness for data mining algorithms, since
mutation coverage is expensive to measure.

When we analyzed the results of mutation coverage for the
individual files of each algorithm, we discovered two special
cases where mutation coverage for “apriori.java” for the
Apriori algorithm decreased by one mutant from 4-way to 5-
way and 6-way testing. As discussed in the Section II, the CT
tests we created using ACTS used the extend mode. This
means that every higher strength test set is a superset of its
predecessor. Consequently, branch coverage and mutation
coverage should not decrease from a lower strength test set to
a higher strength test set. We have informed the lead

Finding 2: Branch coverage increases progressively
slower as test strength increases. The coverage increase
stops at a test strength that is relatively low.

Implication 2: During CT, data mining algorithms
display similar behavior as general software applications.
CT has the potential to be effective for testing data
mining algorithms.

developer of PIT with this issue, but the exact cause has not
been successfully identified.

D. Threats to Validity
Threats to external validity occur when the experimental

results could not be generalized to other subjects. Our subject
programs implement the top five data mining algorithms
identified in [44] and are from a widely used data mining tool,
i.e., WEKA. The datasets used in our experiments have been
used in other studies [32]. More experiments using data
mining algorithms other than these five algorithms and using
different datasets can further reduce threats to external
validity.

Threats to internal validity are other factors that may be
responsible for the experimental results. To prevent mistakes
that could happen during the modeling process, two of the
authors created the IPM independently and cross-checked
them against each other. We have automated the execution of
experiments using scripts, as an effort to minimize human
errors. Furthermore, consistency of the results (executed by
scripts) has been checked by two of the authors using their
independently written scripts.

 RELATED WORK
We first review previous work on applying CT to different

types of software. Lei et al. [30] developed a t-way testing
strategy for testing concurrent programs. Simos et al. [40] and
Bozic et al. applied CT to perform security testing of web
applications [6]. Li et al. applied CT to test three real-life
industrial software systems that include an embedded system,
a graphical operating system and a database management
system [35]. Dhadyalla et al. applied CT to test automotive
control software embedded in a hybrid electric vehicle [16]. Li
et al. applied CT to ETL applications [34]. Note that ETL is a
special type of big data applications. However, the work in
[34] focuses on data transformation and management aspects,
whereas our work focuses on algorithmic aspects. These
existing works show that CT can be effectively applied to
different domains. However, to our knowledge, our work is
the first one that applies CT to data mining algorithms.

Second, we review existing work related to evaluating the
effectiveness of CT. Khun et al. [31] investigated the fault
detection effectiveness of t-way testing. Kuhn et al. [27] report
a study that applies CT and random testing to detect deadlocks
in a network simulator. Bell and Vouk discussed the
effectiveness of pairwise testing and random testing to a
network-centric software [2]. A number of studies have been

reported that compares the effectiveness of CT and random
testing [1, 5, 7, 17, 25, 41, 42]. There are also studies that
investigate the code coverage effectiveness of t-way testing
[13, 15]. Our work presented in this paper is the first effort to
evaluate the effectiveness of CT to data mining algorithms.

Third, we review previous work related to testing data
mining applications. Jeske et al. [24] developed a platform to
generate realistic, synthetic data to test data mining tools. Data
mining tools were evaluated in terms of their false positive
and false negative error rates when executed with the synthetic
data. Murphy et al. discussed how to identify metamorphic
properties for performing metamorphic testing of data mining
algorithms [38]. Metamorphic testing is one approach to
addressing the test oracle problem. Murphy et al. [37]
discussed approaches to test machine-learning applications
that implement ranking algorithms. Our work is different in
that we apply CT to test data mining algorithms.

Finally, we note that a significant amount of work has
been reported on testing database centric applications [3, 8, 9,
10, 18, 33, 45]. Similar to work presented in [34], these work
focuses on testing data management aspects. In contrast, our
work focuses on the algorithmic aspects of data mining
software.

 CONCLUSION AND FUTURE WORK
In this paper, we reported an experiment that applied CT to

five data mining algorithms implemented in the WEKA tool.
This is part of a larger effort that is aimed to develop effective
CT-based methods for testing big data applications. The
experiment allows us to obtain some initial understandings
about the effectiveness of CT on data mining algorithms. In
particular, the results of our experiment indicate that data
mining algorithms behave in a way that is similar to general
software. This suggests that CT has the potential to be
effectively applied to data mining algorithms.

We plan to continue our work in the following three
directions. First, we will perform detailed code analysis to
better understand the results of our experiment. In particular,
we want to investigate why some branches were executed by
none of our test sets, and whether these branches could be
executed by using different configuration options and/or
datasets. Second, in our experiment, we only applied CT to
configuration options. We plan to investigate how to apply CT
to create representative datasets. The key challenge is to
identify the characteristics of a dataset that could significantly
impact the execution of the underlying algorithm. We can
model these characteristics as abstract parameters, and then
apply CT to these parameters to create representative datasets.
Third, negative testing alone has shown great importance in
achieving good coverage, we will perform further
investigation and experiments on how we can better use
negative testing to improve the coverage of CT [20].

 ACKNOWLEDGMENT
This work is supported by grant 70NANB15H199 from

Information Technology Lab of National Institute of
Standards and Technology (NIST).

Finding 3: Branch coverage and mutation coverage seem
to correlate well for data mining algorithms. That is,
higher branch coverage seems to imply higher mutation
coverage, and vice versa.

Implication 3: Branch coverage could be used as a good
indicator of fault detection effectiveness for data mining
algorithms, since mutation coverage is expensive to
measure.

Disclaimer: Certain software products are identified in

this document. Such identification does not imply
recommendation by the NIST, nor does it imply that the
products identified are necessarily the best available for the
purpose.

REFERENCES
[1] W. A. Ballance , S. Vilkomir, and W. Jenkins. Effectiveness of pair-

wise testing for software with boolean inputs. Proceedings of the IEEE
Fifth International Conference in Software Testing, Verification and
Validation (ICST), 580-586, 2012.

[2] K.Z. Bell, and M.A. Vouk. On effectiveness of pairwise methodology
for testing network-centric software. Proceedings of the 3rd
International Conference in Information and Communications
Technology for Enabling Technologies for the New Knowledge Society,
221-235, 2005.

[3] C. Binnig, D. Kossmann, and E. Lo. Testing database applications.
Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, 739-741, 2006.

[4] M.N. Borazjany, L.S. Ghandehari, Y. Lei, R. Kacker and R. Kuhn. An
input space modeling methodology for combinatorial testing.
Proceedings of the Sixth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 372-381, 2013.

[5] M.N. Borazjany, L. Yu, Y. Lei, R. Kacker and R. Kuhn. Combinatorial
testing of ACTS: A case study. Proceedings of the Software Testing,
Verification and Validation (ICST), 591-600, 2012.

[6] J. Bozic, B. Garn, I. Kapsalis, D. Simos, S. Winkler, and F. Wotawa.
Attack pattern-based combinatorial testing with constraints for web
security testing. Proceedings of the IEEE International Conference In
Software Quality, Reliability and Security (QRS), 207-212, 2015.

[7] R.C. Bryce, A. Rajan, and M.P. Heimdahl. Interaction testing in model-
based development: Effect on model-coverage. Proceedings of the 13th
Asia Pacific Software Engineering Conference (APSEC), 259-268,
2008.

[8] D. Chays, S. Dan, P.G. Frankl, F.I. Vokolos and E.J. Weyuker. A
framework for testing database applications. Proceedings of the ACM
SIGSOFT Software Engineering Notes, 25(5), 147-157, 2000.

[9] D. Chays, Y. Deng, P.G. Frankl, S. Dan, F.I. Vokolos and E.J. Weyuker.
An AGENDA for testing relational database applications. Proceedings
of the Software Testing, verification and reliability, 17-44, 2004.

[10] M.Y. Chan, and S.C. Cheung. Testing Database Applications with SQL
Semantics. In CODAS, 363-374, 1999.

[11] M. Chen, S. Mao, and Y.Liu. Big data: A survey. Mobile Networks and
Applications, 171-209, 2014.

[12] C.P. Chen and C.Y. Zhang. Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data. Information
Sciences, 275, 314-347, 2014.

[13] E.H. Choi, O. Mizuno, O and Y. Hu. Code Coverage Analysis of
Combinatorial Testing. Proceedings of the 4th International Workshop
on Quantitative Approaches to Software Quality, p.34.

[14] H. Coles. Pit mutation testing. http: //pitest.org/, 2016.
[15] J. Czerwonka. On use of coverage metrics in assessing effectiveness of

combinatorial test designs. Proceedings of the IEEE Sixth International
Conference in Software Testing, Verification and Validation Workshops
(ICSTW), 257-266, 2013.

[16] G. Dhadyalla, N. Kumari and T. Snell. Combinatorial testing for an
automotive hybrid electric vehicle control system: a case study.
Proceedings of the IEEE Seventh International Conference in Software
Testing, Verification and Validation Workshops (ICSTW), 51-57, 2014.

[17] M. Ellims, D. Ince and M. Petre. The effectiveness of t-way test data
generation. Proceedings of the International Conference on Computer
Safety, Reliability, and Security, 16-29, 2008.

[18] M. Emmi, R. Majumdar and K. Sen. Dynamic test input generation for
database applications. Proceedings of the International Symposium on
Software testing and analysis, 151-162, 2007.

[19] A. Frank, and A. Asuncion, A. UCI Machine Learning Repository
[http://archive. ics. uci. edu/ml]. Irvine, CA: University of California.
School of Information and Computer Science, 213, 2010

[20] A. Gargantini, J. Petke, M. Radavelli and P. Vavassori. Validation of
Constraints Among Configuration Parameters Using Search-Based
Combinatorial Interaction Testing. Proceedings of the International
Symposium on Search Based Software Engineering, 49-63, 2016.

[21] M. Grindal and J. Offutt. Input parameter modeling for combination
strategies. Proceedings of the 25th conference on IASTED International
Multi-Conference Software Engineering, 255-260, 2007.

[22] M. Hoffmann, B. Janiczak, E. Mandrikov and M. Friedenhagen. Jacoco
code coverage tool. Online , 2016

[23] D.R. Jeske, P.J. Lin, C. Rendon, R. Xiao and B. Samadi. Synthetic data
generation capabilties for testing data mining tools. Proceedings of the
IEEE Military Communications conference(MILCOM), 1-6, 2006.

[24] D.R. Jeske, B. Samadi, P.J. Lin, L. Ye, S. Cox, R. Xiao et.al.,
Generation of synthetic data sets for evaluating the accuracy of
knowledge discovery systems. Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data
mining, 756-762, 2005.

[25] N. Kobayashi, T. Tsuchiya and T. Kikuno. Applicability of non-
specification-based approaches to logic testing for software. Proceedings
of the IEEE International Conference on Dependable Systems and
Networks, 337-346, 2001.

[26] R. Kuhn, R. Kacker, Y. Lei and J. Hunter. Combinatorial software
testing. Computer, 42(8), 2009.

[27] D.R. Kuhn, R. Kacker and Y. Lei. Random vs. combinatorial methods
for discrete event simulation of a grid computer network. Proceedings of
ModSim World, 83-88, 2010.

[28] D.R. Kuhn, R. Kacker and Y. Lei. Introduction to CT. CRC press, 2013.
[29] D.R. Kuhn, R. Kacker and Y. Lei. Estimating t-Way Fault Profile

Evolution During Testing. Proceedings of the IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC) Vol. 2,
596-597, 2016.

[30] Y. Lei, R.H. Carver, R. Kacker and D.Kung. A combinatorial testing
strategy for concurrent programs. Proceedings of the Software Testing,
Verification and Reliability, 17(4), 207-225, 2007.

[31] D.R. Kuhn, D.R. Wallace and A.M. Gallo. Software fault interactions
and implications for software testing. Proceedings of the IEEE
transactions on software engineering, 30(6), 418-421, 2004.

[32] M. Lichman. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science, 2013.

[33] B. Li, M. Grechanik and D. Poshyvanyk. Sanitizing and minimizing
databases for software application test outsourcing. Proceedings of the
IEEE Seventh International Conference on Software Testing,
Verification and Validation, 233-242, 2014.

[34] N. Li, Y. Lei, H.R. Khan, J. Liu and Y. Guo. Applying combinatorial
test data generation to big data applications. Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering (ACM) , 637-647, 2016.

[35] X. Li, R. Gao, W.E. Wong, C. Yang and D. Li. Applying Combinatorial
Testing in Industrial Settings. Proceedings of the IEEE International
Conference on Software Quality, Reliability and Security (QRS), 53-60,
2016.

[36] T.M. Mitchell, Machine learning. Burr Ridge, IL: McGraw Hill, 45(37),
870-877, 1989.

[37] C. Murphy, G.E. Kaiser and M. Arias. An Approach to Software Testing
of Machine Learning Applications. In SEKE, 167, 2007.

[38] C. Murphy, G.E. Kaiser, L. Hu and L.Wu. Properties of Machine
Learning Applications for Use in Metamorphic Testing. In SEKE (Vol.
8), 867-872, 2008.

[39] G. Paynter, L. Trigg, E. Frank and R. Kirkby. Attribute-relation file
format (ARFF). Online] http://www. cs. waikato. ac. nz/ml/weka/arff.
Html, 2008.

[40] D.E. Simos, K. Kleine, L.S.G. Ghandehari, B. Garn, and Y. Lei. A
Combinatorial Approach to Analyzing Cross-Site Scripting (XSS)

Vulnerabilities in Web Application Security Testing. Proceedings of the
International Conference on Testing Software and Systems, 70-85, 2016.

[41] P.J. Schroeder, P. Bolaki, and V. Gopu. Comparing the fault detection
effectiveness of n-way and random test suites. In Proceedings of
International Symposium on Empirical Software Engineering, 49-59,
2004.

[42] S. Vilkomir, O. Starov and R. Bhambroo. Evaluation of t-wise approach
for testing logical expressions in software. Proceedings of the IEEE
Sixth International Conference in Software Testing, Verification and
Validation Workshops (ICSTW), 249-256, 2013.

[43] H. Wang, C. Xu, J. Sui and J. Lu. How Effective Is Branch-Based
Combinatorial Testing? An Exploratory Study. Proceedings of the IEEE

International Conference in Software Quality, Reliability and Security
(QRS), 41-52, 2016.

[44] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda et al.
Top 10 algorithms in data mining. Knowledge and information systems,
14(1), 1-37, 2008.

[45] X. Wu, Y. Wang and Y. Zheng. Privacy preserving database application
testing. Proceedings of the ACM workshop on Privacy in the electronic
society, 118-128, 2003.

[46] L. Yu, Y. Lei, R.N. Kacker and D.R. Kuhn. Acts: A combinatorial test
generation tool. Proceedings of the IEEE Sixth International Conference
on Software Testing, Verification and Validation (ICST), 370-375,
2013.

