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Abstract—Recent advancements in large language models
(LLMs) have demonstrated remarkable proficiency in under-
standing and generating human-like text, leading to widespread
adoption across domains. Given LLM’s versatile capabilities,
current evaluation practices assess LLMs across a wide variety
of tasks, including answer generation, sentiment analysis, text
completion, and question and answers, to name a few. Multiple
choice questions (MCQ) have emerged as a widely used evaluation
task to assess LLM’s understanding and reasoning across various
subject areas. However, studies from the literature have revealed
that LLMs exhibit sensitivity to the ordering of options in MCQ
tasks, with performance variations based on option sequence,
thus underscoring the robustness concerns in LLM performance.

This work presents a combinatorial testing-based framework
for systematic and comprehensive robustness assessment of pre-
trained LLMs. By leveraging the sequence covering array, the
framework constructs test sets by systematically swapping the or-
der of options, which are then used in ascertaining the robustness
of LLMs. We performed an experimental evaluation using the
Measuring Massive Multitask Language Understanding (MMLU)
dataset, a widely used MCQ dataset and evaluated the robustness
of GPT 3.5 Turbo, a pre-trained LLM. Results suggest the
framework can effectively identify numerous robustness issues
with a relatively minimal number of tests.

Index Terms—Testing AI; Combinatorial Testing; Testing
LLM; LLM Robustness; LLM Evaluation; Option Order Swap-
ping;

I. INTRODUCTION

Large Language Model (LLM), a type of Artificial Intel-
ligence (AI), is primarily developed to accomplish natural
language processing tasks. LLMs have emerged as a trans-
formative technology making significant strides and exhibit-
ing remarkable capabilities in understanding, reasoning, and
generating human-like text. Successful adoptation of LLMs
across domains depends on the ability to comprehensively
test and evaluate (T&E) LLMs, thereby guaranteeing their
performance. Given LLM’s versatile capabilities, the current
practice involves evaluating its capabilities across subject areas
through various tasks [1]–[3]. Among such tasks, multiple
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choice questions (MCQ)-based tasks have emerged as a promi-
nent evaluation method for assessing the LLM’s understanding
and reasoning abilities [2]. In the MCQ task, the LLM under
evaluation is provided with a set of questions, with each
question consisting of a set of typically four options, and
the LLM’s response option to each question is compared
against the correct option called the “ground truth.” From
the comparison, the overall model accuracy is calculated, and
LLMs achieving a higher score are considered to exhibit better
performance, and thus considered to have better understanding
and reasoning abilities. MCQ tests are typically drawn from
benchmark datasets such as the Measuring Massive Mul-
titask Language Understanding (MMLU) benchmark [4], a
widely used MCQ benchmark dataset for evaluating LLMs.
For example, Gemini, a state-of-the-art widely popular LLM,
highlights that their model achieved an accuracy score of
90.0% in MMLU benchmark demonstrating the widespread
use of MCQ-based tasks in LLM evaluation [5]. The MCQ-
based tasks have gained prominence, and MCQ is one of the
widely used tasks used among the LLM evaluation community
[1]–[3], [5]–[8].

While these MCQ-based evaluations offer benchmarking
capabilities, they suffer from significant limitations. Firstly,
the inherent probability of an LLM choosing/predicting correct
answers through random guessing. For example, in the case
of an MCQ test set with four options, there is a 1 in 4 chance
(25%) for an LLM’s response matching with the ground truth
through random guessing. Consequently, while an LLM might
achieve a high score on an MCQ test set, it does not neces-
sarily indicate better performance. The possibility of an LLM
achieving a higher score through random chance necessitates
further evaluation to robustly assess the LLM’s understanding
and reasoning capabilities. Secondly, an LLM can exhibit
memorization behaviors, learning to recognize patterns in the
question or answer set rather than truly understanding the
underlying concepts.

Furthermore, recent studies from the literature have demon-
strated that LLM performance in MCQ tasks is sensitive to the
order of the answer options [9]–[14]. That is, upon changing
the order of options in MCQ, the performance of an LLM
tends to fluctuate, and in some cases, results in a significant
drop in prediction accuracy [9]. These observations highlight
the potential vulnerabilities in MCQ-based evaluation methods
and underscore the need for robustness assessments of LLM
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performance in MCQ tasks that cover all possible scenarios.
A comprehensive assessment necessitates testing all possi-

ble orderings (n! for n options), resulting in an exhaustive
test set. While exhaustive testing might enable a thorough
assessment, the computational complexity makes this approach
impractical for large-scale evaluations. For example, a question
with four options will require testing 24 permutations (4!), and
an MCQ dataset with 100 questions will require executing
2400 test cases. To address this challenge, this paper presents
a combinatorial testing-based approach to evaluate the robust-
ness of LLMs in MCQ tasks. Combinatorial testing, a pseudo-
exhaustive test generation strategy, has proven effective in test-
ing traditional software systems by achieving comprehensive
coverage with a relatively minimal number of test cases [15]–
[17]. Specifically, we investigate the applicability of sequence
covering arrays in constructing test sets to perform robustness
assessments of LLMs in MCQ tasks.

Recall that, for the robustness assessment of LLMs, the
objective is to test all possible order combinations (n! for n
options). By employing sequence-covering arrays, we can sys-
tematically generate tests to evaluate the impact of combina-
tions of options and, more importantly, the order in which the
options are related. Furthermore, given n options, generating
tests using a sequence covering array guarantees all n options
will be tested in every t-possible order [18], [19]. Consider
a question with four options {A, B, C, and D} and correct
answer C. Upon providing the question and answer sequence
ABCD, assume that the LLM correctly predicts C. Robustness
testing approaches that rely on random swapping primarily
focus on testing by varying the position of the predicted
option and the impact on the LLM’s performance (e.g., CABD
or ACBD or ABDC). They are most likely not to prioritize
evaluating how the ordering of non-predicted options impacts
the LLM’s performance. On the contrary, using sequence
covering arrays to generate test cases guarantees that the test
scenarios will be a combination of both – testing the impact
of the ordering of predicted options as well as the ordering of
non-prediction options, including permutations like BACD and
DACB, thereby enabling a relatively comprehensive robustness
assessment.

Given an MCQ test set, the approach presented in this paper
generates additional K question-option sets for each question-
option from the benchmark test set based on the 3-sequence
covering table from the sequence covering array library [19].
For an MCQ with four options, there are 4! = 24 possible
orderings of options. However, by leveraging a 3-sequence
covering array, our test generation approach generates six
additional questions, a 75% reduction in test set size compared
to all permutations. We present an experimental evaluation of
our approach. We use GPT 3.5 Turbo [20], a pre-trained LLM,
as our subject model. Eight datasets were selected at random
from the MMLU benchmark.

To evaluate the robustness of GPT 3.5 Turbo, we imple-
ment a systematic assessment framework. For each question
(referred to as the base question) from the dataset, using our
approach, we generate six additional questions (referred to as

variants). The LLM’s response to both base and its variants is
recorded and analyzed. We conducted the robustness assess-
ment at the question level: the LLM is considered to exhibit
robust behavior if the LLM’s response remains consistent
across the base and all its variants (regardless of correctness
of response). Conversely, if any variant resulted in an outcome
different from the LLM’s response to the base question, the
LLM failed the robustness assessment. Finally, we quantify the
overall robustness by calculating the proportion of questions
that pass the robustness assessment across the dataset.

Our results indicate that the variants generated using our
approach can detect several robustness vulnerabilities in the
LLM. In several cases, for 50% or more variants, the LLM
produced a different response from the base question, high-
lighting severe concerns about the overall robustness of the
LLM.

This paper makes the following contributions:
• A CT-based test generation method for evaluating the

robustness of LLMs in MCQ tasks by systematically
swapping the order of answer options.

• A robustness assessment framework for a granular
question-level analysis of LLMs performance in MCQ
tasks.

• A preliminary comparative study between CT-based
option-swapping and exhaustive test sets for detecting
LLM robustness vulnerabilities.

The remainder of this paper is organized as follows. Section
II presents background. Section III describes our approach.
Section IV presents our experiments, including the design
of our experiments, followed by the results and discussion.
Section V discuss related work. Finally, in Section VI, we
discuss our concluding remarks and directions for future work.

II. BACKGROUND

A. Testing Large Language Models

AI practitioners leverage deep learning techniques to build
an LLM. These models are trained on large text datasets,
analyze the underlying relationship from their massive training
datasets, and develop capabilities to perform various tasks
with minimal or no human intervention. Recent advancements
in LLMs have demonstrated their potential to understand the
input, reason based on the provided input, and generate output.
This ability has enabled LLM to perform numerous tasks
such as text generation, sentiment analysis, summarization,
information retrieval, text completion, translation, and named
entity recognition, to name a few. Furthermore, users inter-
act with LLMs through natural language, similar to human
communication.

Given its versatile capabilities, testing of LLMs is broadly
focused on evaluating its understanding, reasoning, and gener-
ation capabilities. To facilitate a systematic and comprehensive
assessment, current practices in testing LLM aim to evaluate
its understanding, reasoning abilities, and generation capabil-
ities. The LLM evaluation community accomplishes this goal
by testing holistically across various tasks and datasets.
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Testing LLMs presents unique considerations. Firstly, the
mode of access to the LLM can influence the testing process,
including the associated testing costs. Secondly, the design and
formulation of inputs to interact with the LLMs, commonly
referred to as prompts, influence the LLM’s overall behavior.
The mode of access and prompts are briefly discussed next.

• Access mode: Pre-trained LLMs are distributed using two
common access modes: (1) Pre-trained LLMs that can be
downloaded and executed locally. (2). Pre-trained LLMs
accessed using an Application Programming Interface
(API). Executing an LLM on a local machine requires
significant computational resources. Accessing LLMs via
an API requires strong internet connectivity and involves
usage-based costs, but does not require significant com-
putational resources at the user end.

• Prompt: Users interact with LLM through natural lan-
guage prompts. A prompt, provided as input to an LLM,
is a set of instructions on actions to be performed and
desired behavior that guides the LLM’s response gener-
ation.

B. Combinatorial Testing

Combinatorial testing (CT) is a black-box test generation
technique that focuses on systematically testing the interac-
tions among a system’s input parameters. In a system with
five input parameters, each with three possible values, testing
all possible input value combinations would require 35 = 243
tests. CT, on the other hand, constructs tests that cover multiple
input value combinations per test, thereby resulting in a signif-
icantly reduced test suite while maintaining comparable fault
detection capabilities to exhaustive testing. For example, a 2-
way combinatorial test suite can effectively test all pairwise
combinations of five inputs (2-way parameter interactions),
using only 15 test cases, a 94% reduction compared to the
exhaustive test set, while retaining the fault detection effec-
tiveness.

Sequence covering array (SCA) is a type of combinatorial
test design that focuses on testing the order of events. Unlike
traditional combinatorial test design, which primarily exam-
ines the effect of interactions between input parameters si-
multaneously, SCA-based test design guarantees that all t-way
permutations will be covered by the test suite. In the context of
systematic order-swapping, this unique characteristic of SCA
– “any t events will be tested in every possible order” [18],
[19] – can be leveraged to systematically construct additional
variants (or tests) from a given MCQ dataset. For example,
given an MCQ question with four options, all possible 3-way
orderings can be tested using the SCA presented in Table I.

III. APPROACH

In this section, we introduce a combinatorial testing-based
approach to evaluate the robustness of LLMs in MCQ tasks.
Our approach consists of three steps: First, we generate addi-
tional questions (variants) from each question (base question)
in the MCQ dataset using a 3-way sequence covering array.
Next, in step 2, both the base question and its variants are

TABLE I: 3-SEQUENCE COVERING ARRAY FOR TESTING
FOUR EVENTS [19]

1 2 3 4
1 A D B C
2 B A C D
3 B D C A
4 C A B D
5 C D B A
6 D A C B

provided as input to the LLM, and the LLM responses are
recorded. Finally, in step 3, we perform a question-level
robustness assessment of LLMs in MCQ tasks. To illustrate
our approach, we employ a running example.

In step 1, the goal is to generate variants from each base
question by systematically swapping the order of options. Each
base question from the MCQ dataset is assumed to have its set
of options and ground truth. We begin the variant generation
process by selecting an individual question from the MCQ
test set, after which variants are generated using the 3-way
sequence covering array table. Consider the example presented
in Figure 1. The original question consists of 4-options and its
corresponding ground truth, which serves as our base question.
Using the 3-Sequence Covering Array table, six additional
questions (variants) are generated by systematically swapping
the order of options. Furthermore, when options are reordered,
the ground truth is adjusted accordingly. For example, in the
case of variant 1, the ground truth is adjusted from D (original
question) to B (reordered). This process is repeated to all the
questions from the MCQ dataset, generating the robustness
assessment test dataset. Overall, given an MCQ test set with
N questions, our approach using a 3-way sequence covering
table for questions with four options generates six variants
per question, yielding a total of N + (6N) questions. In step
2, we execute the test cases and record the LLM’s response.
We classify each test outcome as either passing test (LLM
prediction matches ground truth) or failing test (prediction
differs from the ground truth).

Next, in step 3, we analyze the LLM’s response and perform
a question-level robustness assessment. As shown in Figure
2, an LLM demonstrates robust behavior when its responses
remain consistent across the base question and all its variants.
Conversely, if any variant resulted in an outcome different
from the LLM’s response to the base question, the LLM failed
the robustness assessment. That is, inconsistency between base
and variant responses indicates a robustness failure.

Figures 3 and 4 illustrate the robust behavior for the
question presented in the example. In both scenarios, the
LLM’s response to the original question and all its variants
remains constant. In Figure 3, the LLM’s response to the
original question (Q1) and all its variants (Q2-Q7) remains
consistent and matches the ground truth (pass). Conversely,
Figure 4 shows consistent incorrect responses (fail) across the
base and all its variants (incorrect responses indicated in red
font). Both scenarios indicate robust behavior, as our approach
evaluates response consistency across the base question and its
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Fig. 1: EXAMPLE - TEST GENERATION USING CT-BASED APPROACH

Fig. 2: OVERVIEW OF THE ROBUSTNESS ASSESSMENT FRAMEWORK

variants independent of accuracy.
In scenarios where the LLM produces a different outcome

for one or more variants, then the LLM is considered to fail
the robustness assessment tests. As illustrated in Figure 2, non-
robust behavior manifests in three distinct patterns: (1) Correct
base prediction with one or more variant mispredictions, (2)
LLM incorrectly predicted for the original question (fail).
However, one or more variants’ prediction matches their
respective ground truth (pass), and (3) incorrect predictions
throughout (both the original questions and all variants), but
with inconsistent error patterns. That is, the LLM’s response
to one or more variants results in an incorrect response that
differs from the LLM’s incorrect response to the base question.

In the event of deviation of LLMs response between the
original question and its variants, three scenarios are possible:

• Scenario 1 - the LLMs correctly predicted the original
question (pass) but resulted in a misprediction for one or
more variants (fail). In Figure 5, the base question and all

four out of six variants resulted in a correct prediction.
However, for Questions 4 and 5, the LLM predicted an
incorrect response.

• Scenario 2 - LLM incorrectly predicted for the original
question (fail). However, one or more variants’ prediction
matches their respective ground truth (pass). For the ex-
ample in Figure 6, the LLM predicted the same incorrect
response for both the base and five out of six variants.
However, for Question 3, the LLM predicted a response
that matches the ground truth, thus failing the robustness
assessment.

• Scenario 3, where the original questions and all variants
result in incorrect prediction (fail). However, one or
more variants exist whose incorrect response differs from
the LLM’s incorrect response to the original question.
Consider Questions 5 and 6 in Figure 7. The LLM
predicted incorrect responses for both questions, similar
to the rest. However, the LLM responses to questions 5
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Fig. 3: ROBUST BEHAVIOR - EXAMPLE 1

Fig. 4: ROBUST BEHAVIOR - EXAMPLE 2

(Woodrow Wilson) and 6 (Abraham Lincoln) are different
from the rest (James Madison).

The aforementioned assessment is performed for all the
questions from the MCQ dataset to determine the robustness
of the LLM in MCQ tasks.

IV. EXPERIMENTS

In this section, we first present the design of our exper-
iments, including the research question, datasets, the LLM,
steps in generating the tests, and the metrics used to measure

Fig. 5: NON ROBUST BEHAVIOR - SCENARIO 1

Fig. 6: NON ROBUST BEHAVIOR - SCENARIO 2

the robustness of LLM. Next, we present and discuss the
results of our experiments, followed by a discussion on threats
to validity.

A. Research Question

Our experiments are designed to answer the following
research question:

• How effectively can combinatorial testing-based approach
with systematic option reordering identify response in-
consistencies in LLMs when evaluated on MCQ tasks?
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Fig. 7: NON ROBUST BEHAVIOR - SCENARIO 3

B. Dataset

Measuring Massive Multitask Language Understanding
(MMLU) is a widely used benchmark dataset for LLM eval-
uation [4]. It consists of MCQ test sets across 57 subjects in
four categories namely Humanities, Other, Social Science and
Science, Technology, Engineeering and Mathematics (STEM).
The MMLU test set consists a total of 14070 multiple-choice
questions, with a minimum of 100 questions per subject. Each
question has four options to choose from, as well as the
ground truth. For our experiments, we selected eight subjects
by randomly selecting two subjects per category. Information
about the datasets is presented in Table II.

TABLE II: DATASETS USED IN EXPERIMENTS

Number Category Subject Area Number of
Questions

1 2*Humanities Philosophy 311
2 Prehistory 324
3 2*Other Business Ethics 100
4 Marketing 234
5 2*Social Science Geography 198
6 US Foreign Policy 100
7 2*STEM College Computer Science 100
8 Algebra 100

C. Model

Access mode: Hosting and executing LLMs on a local ma-
chine requires significant computational resources; therefore,
we opted for an API-based access mode, which does not have
similar computational requirements. We use OpenAI’s GPT
3.5 Turbo, a widely used API-based pre-trained LLM, as our
subject model [20]. We utilized GPT 3.5 Turbo without any
fine-tuning or instruction-tuning modification, allowing us to

evaluate the LLM’s inherent robustness without the influence
of additional training or optimization.

Prompt: Given that our experiments are performed on an
MCQ dataset, we designed our prompt to explicitly instruct the
LLM to return only its response (A, B, C, or D) and avoid any
additional information in its output. Furthermore, we set the
token size (the number of words a model will return as output)
to 1 to ensure the LLM returns a one-word response, as we
are expecting only the model’s response to the multiple-choice
question. The prompt used in our experiment is as follows:
“User will ask a question to you and provide four options.
Please respond with the letter corresponding to your answer
(e.g., A, B, C, or D).”

D. Test generation and execution

For each subject from Table II, we generated a robustness
assessment test set by generating variants for each MCQ using
the 3-sequence covering array table, provided in [19]. Given
that all eight datasets consist of MCQ with four options, we
choose the sequence covering array to test all 3-sequences and
it is presented in Table I. Following the steps described in the
approach section (Section III), we generated eight test sets,
one per subject. We used a Python script to generate the test
set, execute the tests, interface with the LLM, and record the
LLM’s responses for analysis.

In some instances, the LLM generated outputs that did not
correspond to the expected options (A, B, C, or D). When
this occurred for the base question, both the base question and
its associated variants were excluded from our analysis. This
exclusion is necessary because in this scenario it is impossible
to determine if the LLM’s response to one or more variants has
differed from its response to the base question. In other words,
without a baseline, evaluating the LLM’s behavior across the
variants was not feasible. However, if the LLM predicts an
acceptable value for the base question but predicts an out-
of-bounds value for one or more variants, this scenario is
considered a mismatch or deviation.

E. Metrics

The effectiveness of our approach in performing robustness
assessments of LLM in MCQ tasks is measured in terms of the
number of prediction inconsistencies (non-robust behavior) the
CT-based test set can uncover. As illustrated in Figure 2, our
robustness assessment framework operates at two levels: Level
1 examines whether the LLM’s responses differ between base
test and its variants, while Level 2 provides granular analysis
of failure patterns. This study focuses on Level 1 robustness
assessments, while Level 2 granular assessment remains a
direction for future work.

For each test set, we perform a question-level analysis. Us-
ing the systematic evaluation framework, we analyze whether
the LLM’s response remains consistent across the base ques-
tion and all its variants. A mismatch between the LLM’s
response for the base question and any of its variants is consid-
ered a prediction inconsistency. The number of questions in a
test set exhibiting inconsistent behavior serves as an indicator
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of robustness or lack thereof. For example, if there exist
multiple questions for which the LLM’s response for three or
more variants (representing ≥ 50% of the total variants) does
not match with the LLM’s response for the base question, then
it indicates a significant robustness issue in LLMs (in MCQ
tasks).

F. Results and Discussion

Next, we present and discuss our experimental results. Table
III presents the results of the robustness assessment on GPT
3.5 Turbo in MCQ tasks across eight subject datasets.

First, for each dataset, we analyzed the number of questions
for which at least one variant whose response is different
from the base question’s response. Results indicate that the
CT-based approach successfully identified robustness issues
in GPT 3.5 Turbo across all eight subject areas. The findings
are discussed next:

• Humanities: In Philosophy, 156 out of 311 questions
(50%) exhibited order-dependent behavior. Similarly, in
Prehistory, 146 out of 324 questions (45%) has at least
one variant with a different response.

• Social Sciences: Approximately 30% of questions in
Geography and US Foreign Policy datasets displayed
order sensitivity.

• Other: In Marketing, 50 out of 234 questions (21%)
exhibited robustness issues. In Business Ethics, 63% of
questions failed the robustness assessment.

• STEM: The most pronounced robustness issues were ob-
served in Computer Science (79% of questions failing the
robustness assessment) and Algebra (98% of questions
failing the robustness assessment). This may be attributed
to these subjects’ relatively low initial prediction accu-
racy, although further investigation is required.

A notable observation is that despite substantial initial
prediction accuracy in most subjects (excluding Algebra at
21% and College Computer Science at around 50%), CT-based
systematic option-swapping revealed significant robustness
issues. For example, the marketing dataset, despite achieving
a prediction accuracy of 88% (the highest among all subjects),
the LLM failed the robustness assessments for 21% of ques-
tions (50 out of 234 total instances). Similarly, in the US
Foreign Policy dataset, the LLM prediction was correct for
86 out of 100 questions. However, for 29 % of questions, the
LLM produced a different outcome for at least one of the
variants.

Next, to further understand the severity of robustness fail-
ures, we analyzed the number of questions where at least three
out of the six generated variants produced different responses
compared to the base question. We believe a 50% or more
variant deviation threshold can be a key indicator of significant
robustness concerns in LLM’s response consistency in MCQ
tasks. Across all eight subject areas, substantial robustness
issues were observed. For example, the Pre-history dataset, the
largest dataset (324 questions) in this study, has 85 questions
(26%) for which three or more variants result in a different
LLM prediction than their respective base question’s response.

Among all subjects, the LLM demonstrated better robustness
with the Marketing dataset. However, 10% of its questions
(23) demonstrated robustness issues where three or more of
its variants have a different outcome compared to their base
question’s outcome.

The results suggest that the number of questions fail-
ing the robustness assessments decreases when comparing
single-variant deviation to 50% or more variants deviation.
Nonetheless, a substantial number of questions still fail the
robustness assessment. From a testing standpoint, these results
warrant further investigation of LLM’s robustness. The find-
ings demonstrate that the CT-based systematic order-swapping
approach effectively identifies significant robustness vulnera-
bilities in LLM’s response on MCQ tasks.

Overall, the result demonstrates the effectiveness of the CT-
based test approach. With the generation of only six additional
test cases per question, we identified a significant number of
questions for which the LLM’s response exhibits deviation,
highlighting the approach’s effectiveness in uncovering robust-
ness issues in LLM-based MCQ evaluations.

Second, we conducted a preliminary comparison study
between CT-based option-swapping test sets and exhaustive
test sets to evaluate their relative efficacy in detecting robust-
ness vulnerabilities in LLMs. For an MCQ dataset with four
options, the exhaustive approach has 24 possible permutations.
The first configuration (ABCD) is the base question; the
remaining 23 represent variants. Recall that we access GPT 3.5
Turbo using an API. OpenAI, the provider of GPT 3.5 Turbo,
enforces a daily rate limit on the number of requests per user
[21]. Consequently, we are unable to complete the experiments
for four datasets namely Geography, Marketing, Philosophy
and Prehistory. Multiple execution attempts for these datasets
resulted in timed-out errors. To address this limitation, we plan
to conduct a comprehensive comparison study using a locally
hosted LLM as a part of our future work.

For the remaining four datasets (US Foreign Policy, College
Computer Science, Algebra, and Business Ethics), we compare
the performance of both approaches on two scenarios: (1)
the number of questions where at least one variant response
differs from the base question’s response and (2) the number
of questions for which 50% or more variant responses differ
from the base question’s response. Note that, for scenario 2,
we used a threshold of 3 or more variants for the CT-based
approach and 12 or more variants for exhaustive testing.

Figures 8 and 9 presents the results from our comparison
study. In both figures, the X-axis represents the dataset infor-
mation, while the Y-axis represents the total number of ques-
tions. As presented in Table II, all four datasets consists of 100
questions. In scenarios where one or more variants’ responses
differ from the base question’s response, we observed that
the CT-based option-swapping test sets demonstrated detection
capabilities comparable to exhaustive testing, with the latter
exhibiting marginally better performance. For example, in the
case of the business ethics dataset, seven additional questions
(70 vs. 63) failed in the robustness assessment when tested
using the exhaustive approach. However, despite this marginal
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TABLE III: MODEL PREDICTION RESULTS AND VARIANT RESPONSE ANALYSIS ACROSS DATASETS

Name of the Dataset Number of base Model prediction for Questions with ≥1 variant Questions with ≥ 3 variants
questions base questions response different from base response different from base

Correct Incorrect Count % Count %
Geography 198 164 34 59 30% 27 14%
US Foreign Policy 100 86 14 29 29% 13 13%
College Computer Science 98 53 45 77 79% 50 51%
Algebra 100 21 79 98 98% 85 85%
Business Ethics 100 63 37 63 63% 39 39%
Marketing 234 206 28 50 21% 23 10%
Philosophy 311 224 87 156 50% 77 25%
Prehistory 324 236 88 146 45% 85 26%

performance difference, the CT-based test, with a significantly
smaller number of tests (6) compared to the exhaustive ap-
proach (23), achieved a high detection rate. For the business
ethics dataset, the CT-based dataset achieves a 90% detection
rate (63/70). A similar pattern is observed for the other three
datasets, with the CT-based achieving detection rates of 78%,
88%, and 100% for the US Foreign Policy, Computer Science,
and Algebra datasets, respectively. For the other scenario,
where 50% or more variants’ responses differ from the base
question’s response, CT-based demonstrated marginally better
performance than the exhaustive test set. These preliminary
findings suggest that CT-based option-swapping is a promising
approach for assessing the robustness of LLMs in MCQ tasks,
offering a valuable alternative to computationally expensive
exhaustive testing.

Fig. 8: T-WAY TEST SET VS. EXHAUSTIVE TEST SET - FOR
ATLEAST ONE VARIANT

G. Threats to Validity

Threats to internal validity are factors that may be respon-
sible for the experimental results without our knowledge. To
mitigate the risk of human errors, we tried to automate as
many tasks as possible, from generating the CT-based ro-
bustness assessment test set, interacting with LLM, recording
its response (test execution), and analyzing the test results.
Furthermore, we performed additional manual checks and used
a pivot table to verify the validity of the results. For example,
while analyzing the results of the CT-based test set, among
the eight datasets, the LLM produced unexpected responses
for two questions in the Computer Science dataset (Questions
77 and 80). These questions were subsequently removed from

Fig. 9: T-WAY TEST SET VS. EXHAUSTIVE TEST SET - FOR
50% OR MORE VARIANTS

the analysis, resulting in a total of 98 questions considered
instead of the original 100. Similarly, when analyzing the
results from the exhaustive test set, the LLM generated unex-
pected responses for two base questions in the Algebra dataset
(Questions 3 and 17), which were likewise excluded from the
analysis.

Threats to external validity occur when the results from our
experiments cannot be generalized to other subjects. GPT 3.5
Turbo, the LLM model used in our study, has been used in
other similar studies [10], [12]. Furthermore, in our experi-
ments, we randomly selected eight datasets across different
subject areas from the MMLU dataset, thereby alleviating the
risk of a lack of diverse subject areas in our study.

V. RELATED WORK

In this section, we discuss existing work that is closely re-
lated to our work. First, we discuss prior research investigating
LLM’s sensitivity to option ordering in MCQ tasks.

Gupta et al. conducted a robustness assessment of LLMs
in MCQ tasks using test-retest reliability, a measure used
to assess consistency [9]. While their research objective is
the same as ours – investigating the impact of option order
permutations on LLM predictions using the MMLU bench-
mark, they employed random shuffling and evaluated LLMs
using 5-shot in-context learning. Furthermore, they introduced
a quantitative robustness metric measuring the consistency
of correct answers between original and shuffled versions of
the MMLU dataset, utilizing two randomly shuffled datasets
for assessment. Their study, which evaluated various open-
source LLMs, corroborated our findings regarding LLMs’
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sensitivity to option ordering, particularly noticeable poor
performance in STEM subjects. While their work shares our
fundamental research goals, our approach differs significantly
by implementing a CT-based systematic swapping strategy,
enabling more granular question-level analysis compared to
their random shuffling approach.

Pezeshkpour et al. investigated the robustness of LLMs
with respect to the sensitivity to option ordering in MCQs
[11]. Their study examined the option order sensitivity and
explored the factors contributing to this sensitivity in LLMs.
Specifically, they investigated the robustness of two LLMs
under various conditions (broader in scope) by examining the
impact of model size, tuning mechanisms, and diverse MCQ
test sets with varying numbers of options (3, 4, and 5 options
per question). The authors demonstrated that GPT-4 and
InstructGPT exhibit significant sensitivity to option order in
zero-shot settings across multiple benchmarks. These findings
align with our results, as all our experiments are conducted
in zero-shot settings, meaning the LLMs are neither fine-
tuned nor instruction-tuned and are used in their pre-trained
state. Furthermore, their results indicate that few-shot settings
do not effectively mitigate the lack of robustness to option
order sensitivity. To address these challenges, they proposed
calibration strategies aimed at improving robustness. While
both their work and ours aim to understand the option-order
sensitivity in LLMs, the scope of the studies differs. Their
work comprehensively analyzes multiple factors influencing
option-order sensitivity and proposed methods to enhance
robustness. In contrast, our work serves as a pilot study,
focusing on the applicability of combinatorial testing (CT)-
based systematic test generation for assessing the robustness
of LLMs.

Li et al. evaluated the effectiveness of using MCQ tasks
in evaluating LLMs [12]. Their investigation revealed that
LLMs are susceptible to option order swapping and prefer
specific positions. Li et al. used bilingual datasets (English and
Chinese), whereas this study focuses exclusively on English
datasets. Furthermore, their study, which included GPT 3.5
Turbo (also used in our research), focused on two specific
order swaps (ABCD and BACD). On the other hand, our
approach generates six unique variants for each question, en-
suring comprehensive coverage of all possible 3-way orderings
of the options.

Parlapalli et al. explored the impact of option order sen-
sitivity in LLMs [14]. Their findings indicate that LLM
performance in MCQ tasks is significantly influenced by the
order in which the options are presented, thus exhibiting
selection and positional bias in their behavior. To address this
issue, they proposed a bias mitigation strategy to minimize the
selection bias in LLMs. Similarly, Zheng et al. demonstrated
the inherent selection bias in LLMs, specifically how selection
bias impacts the LLM behavior in MCQ tasks in option order
swapping. Findings from their study indicate that token bias is
the primary factor driving LLM’s preference towards specific
option orderings. Additionally, they presented a de-biasing
approach to mitigate selection bias in LLMs. While our work

also employs GPT 3.5 and MMLU (similar to [14]), our
primary objective diverges significantly. The goal of our work
is to explore the applicability of CT and construct a test set
through systematic order swapping.

To the best of our knowledge, the work presented in this
paper is the first to investigate LLM sensitivity to option
order by constructing test sets that guarantee comprehensive
coverage of all possible 3-way orderings of the options.

Next, we discuss the use of CT in testing AI systems.
While the applicability of CT has been explored to address
the various test & evaluation (T&E) challenges across machine
learning-enabled software systems [22]–[28], to the best of our
knowledge, there are only two prior works that explore the
applicability of CT in testing LLM, and they are discussed
next.

Garn et al. explored the applicability of CT in generating test
oracles to evaluate semantic consistency in LLMs [29]. Given
an original sentence, they break down the sentence into words,
and synonyms for each word is identified. Next, the approach
constructs an IPM by mapping each word from the sentence
as a parameter, and synonyms for each word is mapped as
their respective values. A pairwise test set is generated, and it
is then used to evaluate LLMs for semantic consistency.

Perko et al. investigated the use of CT to evaluate LLM’s
response to diverse prompts in the medical domain [30]. Their
work introduced a CT-based prompt generation pipeline to
create variations of original prompts systematically. By using
pairwise CT, they generated test cases (additional prompts)
and evaluated LLM responses across these variations.

Similar to these studies, this work explores the applicability
of CT in testing LLMs. However, the goal of this work is
different from that of the prior work. We investigate the use
of CT to assess the robustness of LLMs in MCQ tasks by
systematically swapping the order of options.

VI. CONCLUSION AND FUTURE WORK

This paper presents a combinatorial testing-based approach
to perform robustness assessments of LLMs in MCQ tasks.
By leveraging CT, the approach constructs test sets to assess
the robustness of LLMs to option order sensitivity in MCQ
tasks. Our approach’s key idea is to use a 3-way sequence
covering array to generate test sets by systematically swapping
the order of options. We performed an experimental evaluation
of our approach by performing a robustness assessment on
GPT 3.5 Turbo LLM. Datasets from eight different subject
areas were randomly selected from the MMLU benchmark.
Then, each dataset was converted into a robustness assessment
test set using our approach, and question-level robustness
assessments were performed. Results suggest that the test set
can successfully identify numerous robustness issues across all
subject areas. For example, in seven out of eight datasets, ≥
25% of questions failed in robustness assessments. Overall, the
result indicates that the CT-based approach with a relatively
minimal number of tests (75% fewer test cases compared to
an exhaustive test set) can successfully detect a significant
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number of robustness issues in LLM performance on MCQ
tasks.

We plan to extend our work in the following directions as
a part of future work. First, we aim to broaden our inves-
tigation by conducting robustness assessment experiments on
additional open-source, locally hosted LLMs. Furthermore, we
plan to examine the correlation between LLM’s confidence (in
its response) and response stability, specifically investigating
whether base questions for which the LLM had lower confi-
dence correlated with a higher number of deviations among
its variants. Next, we will explore the scalability of a CT-
based approach for MCQ with five or more options. Is a 3-
way sequence covering array sufficient to detect robustness
issues for MCQ datasets with five or more options? Findings
from this pilot study have demonstrated the applicability of
CT in identifying robustness issues (fault detection) in MCQ
tasks across diverse subject areas. As a natural next step,
we plan to develop CT-based fault localization techniques to
understand LLM’s robustness failures. The plan is to investi-
gate whether specific combinations in option-order swapping
influence LLM’s behavior.

Last, we found through this work that LLMs did not always
give a consistent response to the same option ordering. Com-
binatorial test sets are typically generated with the assumption
of its application to deterministic software and thus each inter-
action must appear at least once but need not appear multiple
times in the test set; the necessary number of occurrences
is called the index and denoted with parameter λ. However,
LLMs are based on statistical learning and inherently have
some stochasticity. Thus repeated queries for the same prompt
may be required to accurately evaluate their behavior. This
necessitates an investigation into an appropriate redundancy
level (λ > 1) within combinatorial test suites for effectively
testing LLMs.
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