
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Combinatorial Approach to Testing Deep Neural
Network-based Autonomous Driving Systems

Jaganmohan Chandrasekaran
Department of Computer Science &

Engineering
The University of Texas at Arlington

Arlington, USA
jaganmohan.chandrasekaran@mavs.uta.edu

Yu Lei
Department of Computer Science &

Engineering
The University of Texas at Arlington

Arlington, USA
ylei@cse.uta.edu

Raghu Kacker, D. Richard Kuhn
Information Technology Lab

National Institute of Standards and
Technology

Gaithersburg, USA
{raghu.kacker, d.kuhn}@nist.gov

Abstract—Recent advancements in the field of deep learning
have enabled its application in Autonomous Driving Systems
(ADS). A Deep Neural Network (DNN) model is often used to
perform tasks such as pedestrian detection, object detection,
and steering control in ADS. Unfortunately, DNN models could
exhibit incorrect or unexpected behavior in real-world
scenarios. There is a need to rigorously test these models with
real-world driving scenarios so that safety-critical bugs can be
detected before their deployment in the real world.

In this paper, we propose a combinatorial approach to
testing DNN models. Our approach generates test images by
applying a set of combinations of some basic image
transformation operations to a seed image. First, we identify a
set of valid transformation operations or simply
transformations. Next, we design an input parameter model
based on the valid transformations and generate a t-way (t=2)
combinatorial test set. Each test represents a combination of
transformations, and can be used to produce a test image. We
execute the test images on a DNN model and distinguish between
consistent and inconsistent behavior using a relation. We
conducted an experimental evaluation of our approach on three
DNN models that are used in the Udacity challenge. Our results
suggest that test images generated by our approach can
effectively identify inconsistent behaviors and can significantly
increase neuron coverage. To the best of our knowledge, our
work is the first effort to use a combinatorial testing approach
to generating test images based on image transformations for
testing DNNs used in ADS.

Keywords—Testing DNN models, Combinatorial Testing,
Deep Learning Testing, Neural Network Testing, Testing Self-
driving cars, Testing autonomous vehicles

I. INTRODUCTION
Recent years have seen significant advancements in the

field of deep learning. For traditional software applications, a
developer explicitly writes the programming logic based on a
specific set of requirements. In contrast, deep learning
software applications use a deep neural network (DNN) to
derive its decision logic from a training dataset, which
typically includes a large number of data instances. Deep
learning applications have exhibited an extraordinary ability
to discover valuable insights and derive complex decision
logic from the training dataset. They have been used to
perform tasks, such as image recognition, object detection,
and language translation, with a high degree of precision.

Deep learning has been applied in many application
domains that are considered to require human intelligence. In
particular, deep learning plays a significant role in the
operation of autonomous driving systems, where DNN
models are used to perform tasks such as obstacle detection,
pedestrian detection, steering control, perception and
localization, and route planning. However, since DNN models
are trained and evaluated using a training dataset, they may

suffer from the generalizability problem. For example, an
investigation into Uber's accident suggests that their driving
software system failed to consider the scenario of jaywalking
pedestrians [38]. Tesla's autopilot failed to distinguish
between a bright sky and a white trailer crossing an
intersection; the autopilot attempted to drive under the trailer
resulting in a loss of life [34]. Accidents reported in [34, 38]
suggest a critical need to rigorously test DNN models,
especially using tests that imitate the real-world conditions
and include corner-case scenarios.

Recent work suggests that synthetic images generated
using image transformation techniques can effectively
identify the inconsistent behavior of DNN models [36, 44, 46].
Zhang et al. proposed a framework that uses a Generative
Adversarial Network (GAN) based unsupervised technique to
generate synthetic images that mimic the two extreme weather
conditions (snow and rain) [46]. The findings from their study
suggest that the DNN models used in the Udacity driving
challenge exhibit several inconsistencies when executed with
test inputs generated using their approach. Tian et al.
demonstrated that testing the DNN model with synthetic
images generated with basic image transformations can
produce inconsistent behavior [36]. Their results suggest that
synthetic images generated by combining different image
transformations increase neuron coverage, a measure of
proportion of neurons activated in a DNN model.

This paper presents a combinatorial testing-based
approach to generating test images to test DNN models. In our
approach, we first identify a set of basic image
transformations that do not change the ground truth of the
image being transformed. That is, in principle, the prediction
result for a transformed image produced by such a
transformation is the same as the original image. (In practice,
the prediction result of the transformed image may be different
from that of the original image by a small amount that is less
than a certain threshold.) We then use Combinatorial Testing
(CT) to generate a t-way test set that covers every t-way
combination of these transformations. Each test is a
combination of transformations and can be used to create a test
image.

To address the test oracle problem, we consider how to
identify inconsistent behaviors in two cases. In the first case,
the ground truth of a test image remains the same as that of the
original image. Thus, we consider that an inconsistent
behavior is detected if the prediction result of a test image
differs from that of the original image by an amount that is
more than a threshold. In the second case, the ground truth of
a test image may be different from that of the original image.
Thus, the prediction result of a test image may be expected to
be very different from that of the original image. In this case,
we compare the prediction results of the same test image from
different DNNs that perform the same prediction. An

inconsistent behavior is detected if the prediction results of a
test image from different models do not agree with each other.

Our approach's novelty lies in the fact that we generate test
images using CT. The key insight behind CT is that while the
behavior of a system could be affected by many factors,
individual failures are typically caused by a very small number
of factors [21]. We hypothesize that this insight also applies
to testing DNNs. That is, inconsistent behaviors of a DNN
model could be triggered by a combination of a small number
of basic image transformations. In another word, a t-way test
set that covers every t-way combination of image
transformation can be effective to detect inconsistent
behaviors.

We report an experimental evaluation of our approach
using three of the top five models, namely Autumn [4],
Chauffeur [7], and Rambo [29], from the Udacity self-driving
challenge. We generate tests by applying t-way
transformations to the seed images selected from the Udacity
test dataset. Our results show that t-way tests can identify a
number of inconsistent behaviors in these DNN models. For
example, out of 121 t-way tests generated for a seed image, 29
tests and 95 tests resulted in an inconsistent behavior for the
Autumn model and Chauffeur model, respectively. Our results
suggest that a small number of tests (121 tests) can
significantly increase the cumulative neuron coverage
compared to its baseline. In some cases, t-way tests covered
more than ten times of additional neurons compared to their
respective baseline. Overall, the results provide initial support
for our hypothesis. The results indicate that t-way tests can
help the practitioners to effectively test DNN models in terms
of both detecting inconsistent behavior and increasing neuron
coverage.

Combinatorial testing is applied to test DNN models, as
reported in [9, 23]. However, they follow a white box testing
approach by testing the neurons' interactions within each layer
in the DNN [23] and the effect of variable strength-based CT
tests on interactions between pre-layer and post-layer neurons
of the DNN [9]. To the best of our knowledge, we believe the
work reported in this paper is the first effort to apply the
combinatorial testing approach to generate test images by
combining different types of image transformations to test
DNN models used in autonomous driving systems.

The remainder of this paper is organized as follows. In
Section II, we provide a brief introduction to DNN based
software systems and combinatorial testing. In Section III, we
present our approach, in terms of the major steps performed in
the testing process. In Section IV, we report an experimental
evaluation, where we first report the design of the evaluation
and then discuss the experimental results. Section V discusses
the existing work that is related to ours. Section VI provides
concluding remarks and directions for our future work.

II. BACKGROUND

A. DNN based software systems
Deep learning is a machine learning technique that uses

DNN to perform tasks such as classification and regression. In
traditional software systems, a developer derives rules from
the requirements and implements the rules in the form of
program logic. In contrast, DNN based software systems
derive their decision logic from an input dataset; the decision
logic is referred to as a trained DNN model. The DNN model

takes an input (either image or text depending on the domain)
and produces an output in the form of a prediction.

In recent years, DNN models are widely adopted across
different domains such as medical imaging, language
translation, and autonomous driving systems. They are
increasingly deployed in safety-critical fields to perform tasks
such as speech recognition, image classification, natural
language processing. In particular, autonomous driving
systems (ADS) use DNN models to perform tasks such as lane
control, object identification, and pedestrian detection. For
example, a DNN model used in the autonomous driving
system takes an image from the camera as its input and
predicts the steering angle.

Based on the application domain, the practitioners use
different types of DNN architectures to build a DNN model.
Convolutional Neural Network (CNN), a type of neural
network architecture, is widely used in the autonomous
driving system as they exhibit a higher success rate (better
accuracy) in image recognition. Recurrent Neural Network
(RNN), a type of neural network architecture that uses
temporal information to make predictions, is used in the
autonomous driving system to predict steering angles based
on a sequence of input data (temporal information). The
subject models used in our experiments use a CNN to extract
features from the input images that are passed to either an
RNN or a fully connected network (FC-network) to predict the
steering angle.

B. Combinatorial Testing
Combinatorial Testing is a black-box test generation

technique. For a given system under test (SUT), combinatorial
testing focuses on systematically testing the interactions
among the system's different parameters with a smaller
number of tests.

Consider a program P with four parameters and each
parameter having three values. To test program P, we will
require 81 tests (3*3*3*3=81) to test all possible
combinations (exhaustive test set). Compared to this, using a
t-way combinatorial test set (t=2), it is possible to test all
possible interactions between any two parameters (at least
once) with nine tests. In general, combinatorial testing
approach can significantly reduce the number of tests [10].

ACTS, a combinatorial test generation tool, uses the IPOG
algorithm to generate t-way tests. Consider a program P
modeled with an input parameter model (IPM) with k
parameters. For any t parameters (out of k) of P, IPOG
algorithm generates a t-way test set to cover the first t
parameters and then it generates additional tests (i.e.,
extending the test set) to cover the first t+1 parameters in an
iterative manner until all the parameters are covered by the test
set [43]. ACTS can generate t-way tests of strength t=2
through t=6.

III. APPROACH
In this section, we present a combinatorial approach to test

DNNs. Figure 1 presents an overview of our approach. The
proposed approach is applicable for DNNs that take an image
as an input and outputs a prediction. The goal of our approach
is to generate synthetic images to test the pre-trained DNN
model.

In the first step, we identify basic image transformations
that can be used to create synthetic test images. Geometric

image transformation techniques such as linear
transformations and affine transformations can be used to
generate synthetic images. Applying a linear transformation to
an image does not change the size or shape of the input image.
In contrast, applying the affine transformation, the origins of
the transformed image and the original image do not
necessarily match with each other. In other words, applying
the affine transformation shall result in a change of orientation
and size of the original image. We represent a transformation
in a two-tuple form (transformation name, transformation
value). For example, (Brightness, 10) increases an image's
brightness by a value of 10.

In the second step, given the nature of the domain, the test
input space for a DNN model can be too large (nearly infinite).
Hence, we apply equivalence partitioning, and randomly
select a seed image from each partition. For example, a test
dataset (used in Autonomous Driving Systems domain)
contains image frames recorded all around the year. In this
case, we partition the test dataset based on the weather
conditions such as sunny, rainy, fog, snow, overcast, and
normal weather. We then randomly select an image (seed
image) from each group.

Our approach is aimed to generate valid test images
(synthetic images). In the first step, we identified a set of
transformations that could be applied to generate synthetic
images. However, every transformation might not be
uniformly applicable to seed images. In other words, given the
type and nature of the seed image, applying certain
transformations (identified from Step 1) might generate a
synthetic image that is either unrealistic or invalid. For
example, consider two seed images: image #1 captured during
the middle of the day (brighter, sunny day) and image #2
captured around the time of sunset during winter. We generate
a synthetic image by applying a transformation -- decrease the
brightness by 80% to both seed images. The resulting
synthetic image for image #1 could be valid in terms that the
image is viewable to human eyes. In contrast, the synthetic
image for image # 2 might be invalid, since it could be a
completely dark image. As this example illustrates, some
image transformations when applied to a seed image might
generate invalid test inputs. Note that, in this case, we consider
image #2 as invalid. However, in real world, it is still
important to test such scenarios using other approaches that
deal with images that are completely dark.

To alleviate this problem, in the third step, for each seed
image, we identify a set of valid transformations (a subset of
all possible transformations). We determine the validity by
comparing the prediction results of the original image (Po) and
the transformed image (Ps). For DNN models that outputs a
continuous value (for example, a steering angle), the

transformed image's prediction result may be different, within
a degree of tolerance, from that of the original image.
Therefore, a transformation is considered valid if the
difference between Po and Ps is less than a certain threshold
|Po – Ps| ≤ threshold.

Consider the following example. We are testing a pre-
trained DNN model that predicts the steering angle. Contrast
and Rotation are two possible image transformations, with
five different values per transformation: (Contrast,1),
(Contrast,2), (Contrast, 3), (Contrast, 4), (Contrast, 5), and
(Rotation, 2°), (Rotation, 4°), (Rotation, 6°), (Rotation, 8°),
(Rotation, 10°). Thus, there exists a total of ten possible
transformations. We apply these transformations to the seed
image and generate ten synthetic images. Then, the predicted
value of a synthetic image is compared with the predicted
value of the original image. Three transformations – (Contrast,
5) and (Rotation, 8°), (Rotation, 10°) exceed the threshold.
The remaining seven transformations are identified as valid
transformations for the seed image. It is often the case that
different seed images can have different sets of valid
transformations. The motivation behind this step is to generate
valid tests, thus minimizing false positives.

In the fourth step, we generate t-way tests. For each seed
image, we design an Input Parameter Model (IPM), where
each transformation is identified as a parameter, and the
transformation values that make a transformation valid are
identified as parameter values. In our earlier example,
Contrast: {1,2,3,4} and Rotation: {2°, 4°, 6°} are identified as
parameters and values.

In the final step, based on the IPM, we generate abstract t-
way test set. Then, we derive concrete tests (synthetic images)
by applying t-way image transformations to the seed images
using the OpenCV framework [49]. The synthetic images are
used to test the DNN models.

One challenge in testing ML models is lack of a test oracle.
In practice, data labeling is considered to be an expensive and
challenging task. Thus, a tester might not be able to determine
the ground truth of a synthetic image. In this case, the
practitioners can compare the prediction value across different
model implementations and identify the inconsistent behavior.
Doing so can help practitioners assess a model's performance
in the absence of ground truth. In our approach, we evaluate
the t-way test results in the following two cases:

 Case 1: The original seed image and t-way synthetic
image share the same ground-truth value. In this case, for each
model, if a test fails to satisfy the relation: |Po – Ps| ≤
threshold, the test is considered to exhibit inconsistent
behavior.

FIGURE 1 – APPROACH OVERVIEW

Case 2: The original seed image and t-way synthetic image
do not share the ground-truth value, i.e., they might have a
different ground-truth value. In this case, we evaluate a test by
comparing its prediction results across multiple models (Pm).
It can be challenging to derive the ground truth for each test
(synthetic image). Therefore, we define an inconsistent
behavior as follows: A test exhibits an inconsistent behavior
if the maximum difference in prediction change across
multiple models exceeds a threshold value i.e., if a test fails to
satisfy the following relation

|max(Pm) −min(Pm)| ≤ threshold (1)

IV. EXPERIMENTS
In this section, we present an experimental evaluation of

our approach. The source code, data and/or artifacts have
been made available at [31, 35]

A. Research Questions
Our experiments are designed to answer the following two
research questions:

• Can our combinatorial testing-based approach
successfully identify inconsistencies among DNN
model implementations?

• How does the combinatorial testing-based approach
impact the neuron coverage?

B. Models
We use open-source DNN models from the Udacity self-

driving car challenge. Teams participating in the Udacity self-
driving car challenge developed DNN models that predict the
steering angle (output) based on an image frame (input).
Submitted models were evaluated with the Udacity test dataset
[30] and ranked based on their prediction accuracy
(performance). Models from the Udacity self-driving car
challenge are among the widely used subject models to
evaluate test generation techniques for testing autonomous
vehicle software systems [36][44][46][15].

Among the top five ranking models from the challenge
that are publicly available at [40], we select three models,
namely Chauffeur [7], Rambo [29], and Autumn [4] as our
subject models. We did not use the other two models, namely,
komanda [40] and rwightman [40]. For komanda, the pre-
trained model weight file is not accessible [20]. For
rwightman, the publicly available script failed to execute [30].

• The Autumn model consists of three 5x5
convolution layers with stride 2, followed by two
3x3 convolution layers and five fully connected
layers with a dropout [4]. The Autumn model is
implemented using Tensorflow(v0.11) and
Keras(v1.1.0) [1, 18].

• The Chauffeur model uses a Convolutional
Neural Network (CNN) to extract features from
the input image and use a Long Short-Term
Memory (LSTM) network, a type of Recurrent
Neural Network (RNN), to predict the steering
angles. Chauffeur model is implemented using
Tensorflow (v1.12) and Keras (v1.2.2) [1, 18].

• The Rambo models consist of three CNNs to
extract features, and their output is merged in the
final layer to predict the steering angle. The

Rambo model is implemented using Tensorflow
(v1.12) and Theano (v0.9) [1, 33].

For each subject model, the sequence of image frames that
has been processed before the current frame impacts the
prediction of the current frame. In Autumn, the prediction is
based on five consecutive frames (input + four previous
frames). Chauffeur's prediction is determined by 100
consecutive frames (input + ninety-nine previous frames).
Rambo considers three consecutive frames to make the
prediction (input + two previous frames).

We present the model details in Table I. The first and
second column list the model name, and its network
architecture. The third column presents the Root Mean Square
Error (RMSE) value. RMSE is one of the widely used metric
to measure the prediction errors of a machine learning model
that outputs a continuous value. A lower RMSE value
indicates better performance (prediction). All submitted
models in the Udacity challenge were evaluated and ranked
per RMSE value. In the last column, we present information
about the number of sequence images that influence the
current frame's prediction.

Model
Name

Architecture
Information

RMSE
Prediction Logic Reported

RMSE
Our

RMSE

Autumn CNN 0.04 0.04
Previous 4
frames +
current frame

Chauffeur CNN + RNN 0.06 0.06
Previous 99
frames +
current frame

Rambo CNN 0.06 0.06
Previous 2
frames +
current frame

TABLE I – MODEL INFORMATION

C. Seed Images
We select the seed images from the Udacity test dataset.

The test dataset consists of 5614 test images and their
respective steering angles [39]. The steering angle is in the
range -25° to +25° and normalized to ±1° [36]. An image with
a positive steering value indicates the vehicle is turning right.
A negative steering value indicates turning left, while a
steering angle of 0° or closer to 0° indicates the vehicle is
traveling in a straight direction (i.e., no turns).

The steering angle is in the range of -1 to +1. Based on the
steering angle, we divide the test images into different groups
with an interval of 0.1 per group. We have a total of 20 groups
starting from (-1.0 < steering angle ≤ -0.9) through (0.9 <
steering angle ≤ 1.0). We refer to these groups by Group 1
through Group 20, respectively.

The test dataset does not contain images in the range (-1.0,
-0.9). Thus, there is no representative image from Group 1 in
our experiments. For the remaining nineteen groups, we
randomly select one image from each group as our seed image.
In total, we have nineteen seed images in our experiments.

D. Test Oracle
In the autonomous driving domain, it is hard to determine

an exact steering angle for transformed images. Zhang et al.
used a method to identify the DNN model's consistent
behavior, and it is defined as follows: Given a transformed
image as input, if the DNN model predicts (steering angle)
within a certain error bound, the model is considered to exhibit
a consistent behavior [46]. Similar to their work, we use the

following relation: |Po – Ps| ≤ threshold and identify a model’s
inconsistent behavior in two cases. Po denotes the steering
angle of the original image and Ps denotes the steering angle
of the transformed image. The threshold value is a
configurable parameter, and we use the following three
threshold values: 0.1, 0.2 and 0.3 in our experiments.

 In the first case, we assume the t-way synthetic image and
the original image shares the ground truth. Thus, a t-way
synthetic image that violates this relation |Po – Ps| ≤ threshold
exhibits an inconsistent behavior.

 In the second case, we assume the synthetic image and the
original image does not share the ground truth. In this case, we
compare the prediction results of the same synthetic image
from three DNNs that perform the same prediction. A t-way
synthetic image exhibits an inconsistent behavior if it violates
the relation (1).

E. Metrics
We measure our approach's effectiveness by computing

the number of inconsistent behaviors identified by a t-way
test set. The more inconsistent behaviors the t-way test
detects, the more effective the t-way test is considered.

We also use neuron coverage to measure the effectiveness
of our approach. The notion of neuron coverage is defined as
the ratio of unique neurons that is activated for a given input
to the total number of neurons in a DNN [27]. A neuron is
considered activated if its output is greater than a certain
threshold (defined by the user). Tian et al. used neuron
coverage in their experiments and made their artifacts
publicly accessible [3, 36]. We use their neuron coverage
framework and threshold (0.2) in our experiments. To
measure the cumulative neuron coverage, we first load the
seed image to the DNN and measure its neuron coverage.
This coverage information is used as the baseline in our
experiment. Then, we execute the t-way images and calculate
cumulative coverage relative to the baseline.

F. Test Generation
We begin the test generation step by identifying the

possible image transformations applicable to the Udacity test
dataset. Tian et al. applied a set of seven different types of
simple image transformations to the Udacity test dataset and
studied their impact on neuron coverage [36]. We use these
seven image transformations. Table II presents the list of
transformations and their values used in our experiments.
Overall, we have seventy image transformations (7 different
types of transformations * 10 values per transformation).

Recall that, as discussed in section III, every possible
transformation might not be uniformly applicable to all the
seed images. Therefore, in the next step, we identify the set
of valid transformations for each seed image.

1) Identification of valid transformations
We apply the seven types of transformations with ten

different values per transformation and generate 70 synthetic
images per seed image. Next, the seed image is loaded to three
subject models, and their respective predicted steering angle
is recorded (Po).

Then, for each model, the synthetic images are loaded as
input. Their predicted steering angle (Ps) is compared with the
steering angle of the original seed image (Po). A
transformation is considered to be valid if |Po – Ps| ≤ 0.1. At

the end of this step, we identify the set of valid transformations
per seed image.

TABLE II – TRANSFORMATIONS AND VALUES

2) Generation of t-way tests
To create t-way tests, first, we create an input parameter

model (IPM). The seven transformations from Table II are
identified as parameters. Based on the valid transformations,
we identify the set of possible values for each parameter. Next,
based on the IPM, we generate abstract t-way tests using the
ACTS tool [2]. In our experiments, we generate a 2-way
combinatorial test set. Each test represents a combination of
transformations that could be applied to the seed image. In the
final step, we convert the abstract t-way tests to concrete tests,
i.e., generate synthetic images based on t-way tests. Recall that
each abstract test represents a combination of transformations.
When we generate synthetic images, we apply image
transformations in the following order – Blur, Brightness,
Contrast, Rotation, Scale, Shear and Translation using the
OpenCV framework [49]. (We tried to apply the
transformations in different orders, and found that the order
has minimal impact on the prediction outcomes.) We execute
the subject DNN models with t-way concrete tests (i.e.,
synthetic images) and compare their output with the original
image's predicted steering angle.

G. Example
We illustrate our approach with an example. For the seed

image from group 2 (1479425660620933516.jpg), the three
models, namely Chauffeur, Rambo, and Autumn, predict a
steering angle -0.760681748390198, -0.62006545, and -
0.83253384, respectively (Po).

In Step 1, we generate 70 synthetic images for
1479425660620933516.jpg based on the transformations
listed in Table II. Then, we execute the 70 synthetic images
on three models and compare their predicted steering values
(Ps) with their respective steering angle prediction of the
original image (Po).

In the case of the Chauffeur model, a transformation
(synthetic image) is considered valid if |Po – Ps| ≤ 0.1; 48 out
of 70 transformations satisfy the criteria and thus considered
valid transformations for the chauffeur model. For the Rambo
model, a transformation (synthetic image) is considered valid
if |Po – Ps| ≤ 0.1; 57 out of 70 transformations satisfy the
criteria. Likewise, for the Autumn model, a transformation is
considered valid if the absolute value of |Po – Ps| ≤ 0.1, and
33 transformations satisfy the criteria. Among the 70

Transformations Values

Blur

Averaging 3x3, 4x4, 5x5, 6x6

Gaussian 3x3, 5x5, 7x7

Median 3, 5

Bilateral (9, 75, 75)

Brightness 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Contrast 1.2, 1.4, 1.6, 1.8, 2.0, 2.2., 2.4, 2.6, 2.8, 3.0

Rotation 3, 6, 9, 12, 15, 18, 21, 24, 27, 30

Scale 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0

Shear (Horizontal) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Translation (10,10), (20,20), (30,30), (40,40), (50,50),
(60,60), (70,70), (80,80), (90,90), (100,100)

transformations, 28 transformations are valid across all three
models, and hence these 28 transformations are used to
generate t-way tests.

In step 2, using the ACTS tool, we create the input
parameter model with valid parameters and values identified
from the previous step. Then, we generate 121 abstract tests
from a 2-way test set. Next, we use the Open-CV framework
[49] to generate concrete tests (2-way synthetic images).
Finally, we test the subject models using concrete tests.

H. Results and discussion
First, we present the results of synthetic images generated

using the transformations and values from Table II. These
results are used to identify valid transformations that are later
used in the generation of t-way tests. Next, we present the
inconsistent behavior detection results of the t-way tests.
Finally, we discuss the neuron coverage achieved by the t-way
tests.

1) Identification of Valid Transformations
Figure 2 presents the details of valid transformations

identified for each group. The x-axis presents the group
details and the y-axis presents the number of possible
transformations. In our experiments, we have 70 possible
transformations (7 transformations * 10 values per
transformations). Due to limited space, we present the
number of valid transformations per group. Our results
suggest that Group 10 has the maximum number of valid
transformations, i.e., 50 out of 70 transformations are valid.
Group 20 has the minimum number of valid transformations,
i.e., only 16 out of 70 transformations are valid. We observe
that all transformations Blur are valid across 18 groups. On
the contrary, five transformations, namely Rotation_24,
Rotation_27, Shear_0.4, Shear_0.5, and Shear_0.6 were
invalid across all groups as they failed to meet our criterion
(Po-Ps<=0.1 for all three models).

2) Inconsistent Behavior Detection Results of t-way Tests
In this section, we present the results of t-way synthetic

images. We generate 2-way tests based on the set of valid
transformations identified from the previous step for each
group. Each test represents a combination of transformations
that could be used to generate synthetic image. Then, we
execute the 2-way tests in three subject models to identify the
number of consistent and inconsistent behaviors among three
DNN models.

FIGURE 2 – NUMBER OF VALID TRANSFORMATIONS FOR EACH GROUP

Results for Case 1: In this case, we assume that the

original seed image and t-way synthetic image share the
ground-truth value. Figures 3, 4, and 5 present the t-way test
results for threshold values of 0.1, 0.2, and 0.3, respectively.
Recall that we generate t-way tests per group, and the total
number of t-way tests varies among the groups. Therefore,

we present our results as a percentage of t-way tests that
exhibit consistent behavior. The x-axis represents the group
number. The y-axis represents the percentage of t-way tests
that exhibit consistent behavior. The last column in Table III
presents the total number of t-way tests generated for each
group.

For a threshold value of 0.1, our results indicate that
Rambo is less prone to inconsistent behavior among the three
subject models. As Figure 3 suggests, for eight groups (3, 7,
9, 12, 13, 15, 16, and 20), t-way tests executed with the
Rambo model do not display any inconsistent behavior (all
tests result in a passing state). In addition to this, in groups 5,
6, 14, and 18, more than 90% of the t-way tests executed with
the Rambo model result in a consistent behavior. Apart from
Group 10, the Rambo model exhibits a better prediction
performance than the other two models. In the case of
Chauffeur, more than 50% of t-way tests generated for seven
groups (2, 7, 8, 9, 12, 14, 18) results in an inconsistent
behavior; the lowest being Group 12 with a meager 16% of
tests resulting in a consistent behavior. On the contrary, for
the same group (Group 12), 96% of the t-way tests result in a
consistent behavior for the Rambo model. Our results suggest
that the Autumn model exhibits a mixed performance. In a
few cases (Groups 6 and 10), more than 90% of t-way tests
result in a consistent behavior state. On the contrary, for six
groups (Group 2, 3, 8, 17, 18, 20), the Autumn model
produces an inconsistent behavior for more than 50% of the
t-way tests.

Figures 4 and 5 suggest an increase in the threshold value
results in better performance, i.e., a higher number of
consistent behaviors across three models. In the case of
Rambo, with a threshold of 0.2, in most cases, all t-way tests
generated exhibit a consistent behavior (16 out of 19 groups).
However, for the rest of the two models, we observe that
more than 25% of t-way tests still result in inconsistent
behavior for some groups. For example, group 14, 17, 18,
and 20 for Autumn, group 2, 8, 9, 12, 16, and 18 for Chauffeur
(threshold 0.2). We observe a similar pattern for threshold
0.3. Overall, the results suggest that the Rambo model
exhibits better performance than the other two models.

Results for Case 2: Recall that in this case, the original
and t-way synthetic images might have a different ground-
truth value. We evaluate the t-way test results with three
threshold values: 0.1 (2.5°), 0.2(5°), and 0.3 (7.5°). Table III
presents the results. The first column lists the group number.
The next three columns present the number of t-way tests
exhibiting inconsistent behavior for thresholds of 0.1, 0.2,
and 0.3, respectively. The last column presents the total
number of t-way tests for each group.

The result suggests that t-way tests can detect a significant
number of inconsistent behaviors across different thresholds.
For a threshold of 0.1, in 18 (out of 19) groups, 50% or more
tests result in inconsistent behavior. In 12 (out of 19) groups
more than 90% of tests results in inconsistent behavior.

Our results indicate that an increase in the threshold value
results in a decrease in the number of inconsistent behaviors.
This is as expected. With a threshold of 0.3 (7.5°), for four
groups (Group 5, Group 12, Group 13, and Group 15), less
than 3% of tests resulted in inconsistent behavior. This
indicates that a further increase in threshold might result in a
large number of false negatives. Therefore, we did not
consider a threshold value that is larger than 0.3.

28 24
33

26 26

41 41
49 50 48 44 46 43

37
23

35
23 18 16

0
10
20
30
40
50
60
70

Gr
p2

Gr
p3

Gr
p4

Gr
p5

Gr
p6

Gr
p7

Gr
p8

Gr
p9
Gr
p1
0
Gr
p1
1
Gr
p1
2
Gr
p1
3
Gr
p1
4
Gr
p1
5
Gr
p1
6
Gr
p1
7
Gr
p1
8
Gr
p1
9
Gr
p2
0

N
um

be
r o

f T
ra

ns
fo

rm
at

io
ns

Number of valid transformations per group

Overall, the results suggest that t-way test set are effective
in identifying model inconsistencies. We acknowledge that
both Case 1 and Case 2 have limitations. In Case 1, in some
scenarios, determining the ground truth for a synthetic image
generated from a t-way test set can be a challenging task (lack
of test oracle). In Case 2, given the nature of differential
testing, a model inconsistency can be detected only if (1)
there exist at least two or more models implementing the
same functionality, and (2) at least one model producing a
different result. A practitioner shall choose between Case 1
and Case 2 based on their domain knowledge.

Overall, the results suggest that t-way tests are effective
in identifying model inconsistencies.

3) T-way tests and their impact on Neuron Coverage
In this section, we present the neuron coverage achieved

by t-way tests for the Rambo model. The Rambo model
consists of 3 CNN sub-models referred to as S1, S2, and S3,
and they consist of a total of 1625, 3801, and 13473 neurons,
respectively [36]. Overall, the Rambo model consists of
18899 neurons.

Table IV presents the neuron coverage for the seed
images (baseline). The results indicate that most of the seed
images (17 out of 19) cover approximately 10% of the total
neurons, while Group 10 and Group 11 cover 73.29% and
71.78% of the total neurons, respectively.

Next, we present the neuron coverage achieved by the t-
way tests in Figures 6, 7, 8, and 9. The x-axis represents the
group number. The y-axis represents the percentage of
additional neurons covered by the t-way tests compared to
their respective baseline. Results suggest that t-way tests
result in a significant increase in neuron coverage. In the case
of S1, we notice a moderate increase in the additional number

of neurons covered compared to the baseline. The result
presented in Table IV indicates, amongst the nineteen groups,
the seed image representing Group 17 achieves the least
coverage for S1 with 460 neurons. The t-way tests generated
for group 17 cover an additional 25% of neurons (113
neurons) compared to its baseline. Similarly, in sub-model
S2, across groups, we notice a substantial number of
additional neurons covered by the t-way tests; seven groups
covering more than 50% of additional neurons compared to
their respective baseline.

TABLE III – NUMBER OF INCONSISTENT BEHAVIOR IDENTIFIED BY T-WAY TESTS

(CASE # 2)

We observe that t-way tests achieve a significant increase
in neuron coverage for sub-model S3. Out of 19 groups, t-
way tests generated for eleven groups achieve more than one
hundred percent increase in cumulative neuron coverage; six
groups (Group 2, 7, 8, 9 12, 13) achieve more than ten times
increase in cumulative neuron coverage. On the contrary, t-
way tests for two groups - Group 10 and Group 11 cover a
significantly lesser number of additional neurons. This can be
explained as follows: for sub-model S3, the seed images
representing Group 10 and 11 cover 95.91% and 94.01%
neurons. Hence, their respective t-way tests result in a
marginal increase in neuron coverage.

Overall, the result suggests that t-way tests increase the
neuron coverage significantly. In some cases, the results
suggest a smaller number of t-way tests (120 tests) can cover
more than ten times of additional set of neurons.

FIGURE 3 - T-WAY RESULTS FOR THRESHOLD 0.1 (CASE #1)

FIGURE 4- T-WAY RESULTS FOR THRESHOLD 0.2 (CASE #1)

FIGURE 5- T-WAY RESULTS FOR THRESHOLD 0.3 (CASE #1)

Group Number
of inconsistent behaviors per

threshold Total # of
Tests 0.1 0.2 0.3

2 119 102 69 121

3 107 89 53 110

4 100 45 13 110

5 86 29 0 121

6 102 65 27 102

7 120 86 23 122

8 114 95 55 121

9 109 95 75 121

10 96 54 27 121

11 66 39 27 122

12 91 15 3 126

13 95 30 4 121

14 102 85 36 122

15 44 7 0 121

16 121 118 85 121

17 121 110 78 121

18 54 47 35 55

19 55 52 34 55

20 30 23 18 33

0%

20%

40%

60%

80%

100%

Gr
p2

Gr
p3

Gr
p4

Gr
p5

Gr
p6

Gr
p7

Gr
p8

Gr
p9

Gr
p1
0
Gr
p1
1
Gr
p1
2
Gr
p1
3
Gr
p1
4
Gr
p1
5
Gr
p1
6
Gr
p1
7
Gr
p1
8
Gr
p1
9
Gr
p2
0

%
 o

f t
-w

ay
 te

st
 w

ith
 c

on
si

st
en

t
be

ha
vi

or

Threshold=0.1

Autumn_0.1 Rambo_0.1 Chauffeur_0.1

0%

20%

40%

60%

80%

100%

Gr
p2

Gr
p3

Gr
p4

Gr
p5

Gr
p6

Gr
p7

Gr
p8

Gr
p9

Gr
p1
0

Gr
p1
1

Gr
p1
2

Gr
p1
3

Gr
p1
4

Gr
p1
5

Gr
p1
6

Gr
p1
7

Gr
p1
8

Gr
p1
9

Gr
p2
0

%
 o

f t
-w

ay
 te

st
 w

ith
 c

on
si

st
en

t
be

ha
vi

or

Threshold=0.2

Autumn_0.2 Rambo_0.2 Chauffeur_0.2

0%

20%

40%

60%

80%

100%

Gr
p2

Gr
p3

Gr
p4

Gr
p5

Gr
p6

Gr
p7

Gr
p8

Gr
p9

Gr
p1
0

Gr
p1
1

Gr
p1
2

Gr
p1
3

Gr
p1
4

Gr
p1
5

Gr
p1
6

Gr
p1
7

Gr
p1
8

Gr
p1
9

Gr
p2
0

%
 o

f t
-w

ay
 te

st
 w

ith
 c

on
si

st
en

t
be

ha
vi

or

Threshold=0.3

Autumn_0.3 Rambo_0.3 Chauffeur_0.3

We acknowledge that the neuron coverage results are

unavailable for the remaining two models due to time
limitations. On executing the Chauffeur model with a batch
of 100 images, the current version of the framework, on
average takes 18 minutes to measure the neuron coverage. So,
t-way tests for a group (with 121 tests) takes around [
(121*18)/60 = 36 hours]. It will take weeks to complete the
coverage measurement for all nineteen groups. We plan to
study the impact of t-way tests on neuron coverage of
Autumn and Chauffer model as a part of future work. Also,
we plan to investigate the correlation between neuron
coverage and fault detection as a part of future work.

I. Threats to validity
Threats to external validity occur when the results from

our experiments could not be generalized to other subjects.
The DNN models used in our study have been used in other
studies [36, 44, 46, 15]. All three DNN models used in our
experiments have different architectures, thus alleviating the
risk of lack of DNN architectures (representativeness) used
in our study.

Threats to internal validity are factors that may be
responsible for the experimental results, without our
knowledge. To mitigate the risk of human errors, we tried to

automate as many tasks as possible, from generating
synthetic images to executing the tests. Also, we have
manually checked some of the results whenever any
inconsistent or surprising results occur. For example, out of
121 tests generated for a seed image (group 8), 72.73%
percentage of tests results in a consistent behavior for Rambo
model. In contrast, the other two models had less than 50%
of the tests resulting in a consistent behavior. In such
scenario, we manually verified the results by analyzing the
log file.

V. RELATED WORK
We first discuss the existing work related to testing DNN

based software systems. Traditional testing techniques such as
coverage-guided testing [26, 36, 42], concolic testing [32],
mutation testing [24], differential testing [27], combinatorial
testing [9, 23] have been applied to test DNN models. We
focus on the existing work reported in applying combinatorial
testing (CT) to test machine learning systems as they are most
relevant to our work.

Ma et al. proposed DeepCT, a combinatorial testing
coverage guided test generation technique to test the
robustness of the DNN model [23]. DeepCT follows a white
box testing approach by testing the interactions of the neurons
within each layer in the DNN. Similarly, Chen et al. apply
variable strength combinatorial testing to test DNN models.
They propose three different methods to construct variable
strength-based CT tests and study their effect on interactions
between pre-layer and post-layer neurons [9]. In contrast, we
apply CT as a black-box approach to generate test images and
detect potential predictions errors of DNN models used in
autonomous vehicle software systems.

Li et al. proposed an ontology-based test generation
framework for testing autonomous driving systems [22]. In
Step 1, they construct an ontology based on the autonomous
driving domain. In Step 2, they convert an ontology to a
combinatorial test input model using conversion algorithms.
Next, based on the test input model, they generate abstract
tests that are used to create concrete tests. In Step 3, they
execute the concrete tests and evaluate their results. Gladisch
et al. proposed a combinatorial testing approach to generate a
test dataset for testing perception functions [14]. They use
SCODE [12] to convert a domain model to an input test model
for PICT, a pair-wise test generation tool [17]. Using PICT,
they generate abstract test cases that are later converted to
concrete tests (test images).

Similar to [14, 22], we also develop an input parameter
model (IPM), generate abstract t-way tests (based on the IPM),
generate, execute and evaluate the concrete tests. Our work
differs in the following way: Li et al. develop an input test
model based on the road parameters such as slop, surface, and
lane type. Gladisch et al. generate input test model based on
the traffic scenarios such as daytime, sky conditions, rain,
reflection on road etc. In contrast, we develop an IPM based
on the seven image transformations techniques namely blur,
brightness, contrast, rotation, scaling, shearing and translation.

Next, we discuss the existing literature on testing
autonomous vehicle software systems. A significant amount
of work has been reported on testing autonomous vehicle
software systems [11, 13, 15, 19, 25, 27, 36, 37, 46, 47, 48].
Pei et al. proposed a technique to generate synthetic test inputs
using a joint optimization problem to test DNN models used

GROUP
NUMBER

NUMBER OF COVERED NEURONS
S1 S2 S3 TOTAL

2 500 449 802 1751
3 501 452 1113 2066
4 497 416 722 1635
5 501 428 827 1756
6 496 445 718 1659
7 492 433 1153 2078
8 485 461 778 1724
9 483 438 795 1716

10 468 461 12923 13852
11 475 424 12667 13566
12 463 442 960 1865
13 465 422 808 1695
14 471 430 904 1805
15 467 459 806 1732
16 466 433 1224 2123
17 460 466 822 1748
18 480 456 1176 2112
19 486 422 3801 2118
20 469 447 1189 2105

TABLE IV – NEURON COVERAGE OF SEED IMAGES (RAMBO)

FIGURE 6 –S1

FIGURE 7 – S2

FIGURE 8 – S3

FIGURE 9 – RAMBO MODEL

12% 7% 8% 4%
9% 10%14%16%

21%18%
23%20%

15%
10% 7%

25%

11% 7% 3%

Group
 2

Group
 3

Group
 4

Group
 5

Group
 6

Group
 7

Group
 8

Group
 9

Group
 10

Group
 11

Group
 12

Group
 13

Group
 14

Group
 15

Group
 16

Group
 17

Group
 18

Group
 19

Group
 20

% increase of cumulative neuron coverage _ S1

41%

15%15%

28%

69%73%74%73%75%
70%

36%

52%

27%
21%

8%

44%
36%36%

10%

Group
 2

Group
 3

Group
 4

Group
 5

Group
 6

Group
 7

Group
 8

Group
 9

Group
 10

Group
 11

Group
 12

Group
 13

Group
 14

Group
 15

Group
 16

Group
 17

Group
 18

Group
 19

Group
 20

% increase of cumulative neuron coverage _ S2

1421%

59%56%60%
213%

1011%

1547% 1532%

1% 3%

1243%

1503%

218%
131%62%

309%
132%70%53%

Group
 2

Group
 3

Group
 4

Group
 5

Group
 6

Group
 7

Group
 8

Group
 9

Group
 10

Group
 11

Group
 12

Group
 13

Group
 14

Group
 15

Group
 16

Group
 17

Group
 18

Group
 19

Group
 20

% increase of cumulative neuron coverage _ S3

665%

37%31%36%
113%

578%

722% 733%

4% 5%

654%
735%

120%
69%39%

163%
84%49%33%

Group
 2

Group
 3

Group
 4

Group
 5

Group
 6

Group
 7

Group
 8

Group
 9

Group
 10

Group
 11

Group
 12

Group
 13

Group
 14

Group
 15

Group
 16

Group
 17

Group
 18

Group
 19

Group
 20

Overall % increase of cumulative neuron coverage _
Rambo model

in autonomous vehicle systems [27]. Tian et al. proposed an
approach to generate test inputs (synthetic images) by simple
image transformations [36]. Yan et al. presented an approach
that generates tests by Adaptive Random Testing (ART)
technique and uses an Adaptive Random Testing for Deep
Learning Systems (ARTDL) algorithm that selects test input
using a distance metric known as Feature-based Euclidean
Distance (FED) to test the model under test [44]. Zhang et al.
proposed an unsupervised image-to-image transformations
framework based on Generative Adversarial Network (GAN)
that generates synthesized test inputs that mimics two weather
conditions, namely snow, and rain, to test the DNN model
[46]. Haq et al. presented an empirical comparison of offline
testing (testing the DNN model as an individual component)
and online testing (testing the DNN model as a part of a
software system) of DNN models used in autonomous driving
systems [15].

Similar to our work, existing work reported in [15, 27, 36,
44, 46] have used the Udacity driving challenge-2 datasets to
evaluate their respective approaches. Also, our work is similar
to [36, 44, 46], in terms of generating test inputs by image
transformations and testing and evaluating the DNN models
using metamorphic relations. However, our work differs in the
following way. Tian et al. [36] primarily study the impact of
synthesized images (generated by combining different
transformations) on the neuron coverage. In contrast, our work
focusses on evaluating the impact of synthesized images on
the model's prediction. The work presented in [15] compared
the offline and online testing of DNN systems. It investigated
the possibility of testing DNN's by replacing the original
dataset with simulator-generated datasets. In contrast, our
work explores the possibility of generating test inputs using a
combinatorial testing approach to detect prediction errors in
DNN models. Zhang et al. use an unsupervised network that
uses GAN to generate synthesized test inputs that mimic
different weather conditions [46]. Compared to [44, 46], our
work is focused on generating tests using a combinatorial
testing approach, i.e., generating synthesized images by
combining different images transformations. To the best of
our knowledge, ours is the first work that applies
combinatorial testing techniques to generate t-way synthetic
images for testing DNN models used in autonomous driving
software systems. We also note that there is a significant
number of existing studies in literature, and we refer the reader
to [45] for a comprehensive report on existing work on testing
machine learning systems.

VI. CONCLUSION AND FUTURE WORK
 In this paper, we present a combinatorial testing-based
approach to systematically generate test images to test DNN
models used in the autonomous driving systems. We begin our
approach, by applying basic image transformations on the
seed image (original) and identifying a set of transformations
that do not change the ground truth of the image being
transformed as valid transformations. Then, based on the valid
transformations, we develop the IPM and generate t-way tests
each of which is applied to the seed image to generate an
synthetic image. We identify inconsistent behaviors of DNN
models in two scenarios: (1) the original and synthetic image
share the ground truth and (2) the original and synthetic image
does not share the ground truth.

 We performed an experimental evaluation of our approach
with three publicly available pre-trained DNN models and
datasets from the Udacity self-driving challenge. Our results

indicate, for scenario 1, Rambo model exhibits a better
performance, i.e., less prone to inconsistent behavior,
compared to the other two models. For scenario 2, synthetic
images generated by combining a set of image transformations
(t-way tests) can successfully identify inconsistent behavior
among models. With a threshold of 0.1, more than 90% of test
cases from 12 groups result in an inconsistent behavior.

 Result suggests t-way tests significantly increases the
neuron coverage for the Rambo model. Out of the 19 groups,
synthetic images generated for 17 groups, result in a moderate
to significant increase in cumulative neuron coverage; nine
groups (Group 2, 6, 7, 8, 9, 12, 13, 14, 17) achieves more than
one hundred percent increase in cumulative neuron coverage.
Given the time-intensive nature of the measurement process,
we are unable to measure the neuron coverage for the
remaining two models. We plan to complete the measurement
as a part of future work.

 This is part of our larger effort in applying combinatorial
testing to test DNN based systems. We plan to include
additional weather-based transformations such as rain, fog,
smog, and shadows to generate test images. We hope to
leverage the insights gained from this study to refine our input
parameter model, develop realistic and meaningful constraints
and thus generating more effective t-way tests to test DNN
based systems. Also, we plan to extend this work by
investigating how the combinatorial testing-based approach
can be adopted in testing different versions of the DNN
models in regression testing.

ACKNOWLEDGMENT
This work is supported by research grant

(70NANB18H207) from Information Technology Lab of
National Institute of Standards and Technology (NIST).

Disclaimer: Certain software products are identified
in this document. Such identification does not imply
recommendation by the NIST, nor does it imply that the
products identified are necessarily the best available for the
purpose.

REFERENCES
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... &

Kudlur, M. (2016). Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16) (pp. 265-283).

[2] Advanced Combinatorial Testing System (ACTS) | CSRC,
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-
software/downloadable-tools, Accessed: 2021-02-28

[3] ARiSe-Lab/deepTest: A systematic testing tool:
https://github.com/ARiSE-Lab/deepTest, Accessed: 2020-10-12

[4] “Autumn-model:” https://github.com/udacity/self-driving-
car/tree/master/steering-models/community-models/autumn,
Accessed: 2020-09-12

[5] Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2014).
The oracle problem in software testing: A survey. IEEE transactions
on software engineering, 41(5), 507-525.

[6] Chandrasekaran, J., Feng, H., Lei, Y., Kuhn, D. R., & Kacker, R. (2017,
March). Applying combinatorial testing to data mining algorithms.
In 2017 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW) (pp. 253-261). IEEE.

[7] “Chauffeur-model:” https://github.com/udacity/self-driving-
car/tree/master/steering-models/community-models/chauffeur,
Accessed: 2020-09-12

[8] Chen, T. Y., Cheung, S. C., & Yiu, S. M. (2020). Metamorphic testing:
a new approach for generating next test cases. arXiv preprint
arXiv:2002.12543.

[9] Chen, Y., Wang, Z., Wang, D., Fang, C., & Chen, Z. (2019, April).
Variable strength combinatorial testing for deep neural networks.
In 2019 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW) (pp. 281-284). IEEE.

[10] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG
system: An approach to testing based on combinatorial design. IEEE
Transactions on Software Engineering, 23(7):437–444, July 1997

[11] Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A., & Seshia, S. A.
(2017). Systematic testing of convolutional neural networks for
autonomous driving. arXiv preprint arXiv:1708.03309.

[12] ETAS GmbH. SCODE-ANALYZER Software for describing and
visualizing complex closed-loop control systems, 2019.	
https://www.etas.com/scode.

[13] Gambi, A., Mueller, M., & Fraser, G. (2019, July). Automatically
testing self-driving cars with search-based procedural content
generation. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (pp. 318-328).

[14] Gladisch, C., Heinzemann, C., Herrmann, M., & Woehrle, M. (2020).
Leveraging combinatorial testing for safety-critical computer vision
datasets. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (pp. 324-325).

[15] Haq, F. U., Shin, D., Nejati, S., & Briand, L. C. (2020, October).
Comparing Offline and Online Testing of Deep Neural Networks: An
Autonomous Car Case Study. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification
(ICST) (pp. 85-95). IEEE.

[16] Herbold, S., & Haar, T. (2020). Smoke Testing for Machine Learning:
Simple Tests to Discover Severe Defects. arXiv preprint
arXiv:2009.01521.

[17] Jacek Czerwonka. Pairwise testing in real world. In 24th Pacific
Northwest Software Quality Conf., volume 200, 2006.

[18] Keras-team/Keras: Deep Learning for humans:
https://github.com/keras-team/keras, Accessed: 2020-10-16

[19] Kim, J., Feldt, R., & Yoo, S. (2019, May). Guiding deep learning
system testing using surprise adequacy. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE) (pp. 1039-
1049). IEEE.

[20] Komanda model weight file: https://s3.amazonaws.com/udacity-
sdc/steering-models/komanda/udacity-challenge2-
model/FINE_TUNE_2-checkpoint-sdc-ch2-epoch5, Accessed: 2020-
10-19

[21] Kuhn, D. R., Kacker, R. N., & Lei, Y. (2010). Practical combinatorial
testing. NIST special Publication, 800(142), 142.

[22] Li, Y., Tao, J., & Wotawa, F. (2020). Ontology-based test generation
for automated and autonomous driving functions. Information and
software technology, 117, 106200.

[23] Ma, L., Juefei-Xu, F., Xue, M., Li, B., Li, L., Liu, Y., & Zhao, J. (2019,
February). Deepct: Tomographic combinatorial testing for deep
learning systems. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER) (pp. 614-
618). IEEE.

[24] Ma, L., Zhang, F., Sun, J., Xue, M., Li, B., Juefei-Xu, F., ... & Wang,
Y. (2018, October). Deepmutation: Mutation testing of deep learning
systems. In 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE) (pp. 100-111). IEEE.

[25] Majumdar, R., Mathur, A., Pirron, M., Stegner, L., & Zufferey, D.
(2019). Paracosm: A language and tool for testing autonomous driving
systems. arXiv preprint arXiv:1902.01084.

[26] Odena, A., Olsson, C., Andersen, D., & Goodfellow, I. (2019, May).
Tensorfuzz: Debugging neural networks with coverage-guided
fuzzing. In International Conference on Machine Learning (pp. 4901-
4911).

[27] Pei, K., Cao, Y., Yang, J., & Jana, S. (2017, October). Deepxplore:
Automated whitebox testing of deep learning systems. In proceedings
of the 26th Symposium on Operating Systems Principles (pp. 1-18).

[28] R. Bryce, C. J. Colbourn, M.B. Cohen, "A framework of greedy
methods for constructing interaction tests," Proceedngs of the 27th
International Conference on Software Engineering (ICSE), pp. 146-
155, 2005

[29] “Rambo-model:” https://github.com/udacity/self-driving-
car/tree/master/steering-models/community-models/rambo, Accessed:
2020-09-12

[30] Rwightman-model script file: https://github.com/udacity/self-driving-
car/blob/master/steering-models/evaluation/rwightman.py, Accessed:
2021-01-20.

[31] Self-driving-car-Results-Dropbox, https://tinyurl.com/y2s6qxeo,
Accessed: 2021-01-20.

[32] Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., & Kroening,
D. (2018, September). Concolic testing for deep neural networks.
In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering(pp. 109-119).

[33] Team, T. T. D., Al-Rfou, R., Alain, G., Almahairi, A., Angermueller,
C., Bahdanau, D., ... & Belopolsky, A. (2016). Theano: A Python
framework for fast computation of mathematical expressions. arXiv
preprint arXiv:1605.02688.

[34] Tesla driver dies in first fatal crash while using autopilot mode:
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-
death-self-driving-car-elon-musk, Accessed: 2020-10-19.

[35] Testing-AI-Systems, https://github.com/cjaganmohan/Testing-AI-
Systems, Accessed: 2021-01-20.

[36] Tian, Y., Pei, K., Jana, S., & Ray, B. (2018, May). Deeptest: Automated
testing of deep-neural-network-driven autonomous cars.
In Proceedings of the 40th international conference on software
engineering (pp. 303-314).

[37] Tuncali, C. E., Fainekos, G., Ito, H., & Kapinski, J. (2018, June).
Simulation-based adversarial test generation for autonomous vehicles
with machine learning components. In 2018 IEEE Intelligent Vehicles
Symposium (IV) (pp. 1555-1562). IEEE.

[38] Uber's self-driving car didn't know pedestrians could jaywalk:
https://www.wired.com/story/ubers-self-driving-car-didnt-know-
pedestrians-could-jaywalk/, Accessed: 2020-09-27

[39] "Udacity Challenge 2 – Test Dataset:" https://github.com/udacity/self-
driving-car/blob/master/challenges/challenge-
2/CH2_final_evaluation.csv, Accessed: 2020-09-12

[40] "Udacity self-driving challenge 2," https://github.com/udacity/self-
driving-car/tree/master/steering-models/community-models,
Accessed: 2020-09-12

[41] Wicker, M., Huang, X., & Kwiatkowska, M. (2018, April). Feature-
guided black-box safety testing of deep neural networks.
In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (pp. 408-426). Springer, Cham.

[42] Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., ... & See, S.
(2019, July). Deephunter: A coverage-guided fuzz testing framework
for deep neural networks. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (pp. 146-
157).

[43] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog/ipog-
d: efficient test generation for multi-way combinatorial testing.
Software Testing, Verification and Reliability, 18(3):125–148, 2008.

[44] Yan, M., Wang, L., & Fei, A. (2019). ARTDL: Adaptive Random
Testing for Deep Learning Systems. IEEE Access, 8, 3055-3064.

[45] Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2020). Machine learning
testing: Survey, landscapes and horizons. IEEE Transactions on
Software Engineering.

[46] Zhang, M., Zhang, Y., Zhang, L., Liu, C., & Khurshid, S. (2018,
September). DeepRoad: GAN-based metamorphic testing and input
validation framework for autonomous driving systems. In 2018 33rd
IEEE/ACM International Conference on Automated Software
Engineering (ASE) (pp. 132-142). IEEE.

[47] Zhou, H., Li, W., Zhu, Y., Zhang, Y., Yu, B., Zhang, L., & Liu, C.
(2018). Deepbillboard: Systematic physical-world testing of
autonomous driving systems. arXiv preprint arXiv:1812.10812.

[48] Zhou, Z. Q., & Sun, L. (2019). Metamorphic testing of driverless
cars. Communications of the ACM, 62(3), 61-67.

[49] 2015. Open Source Computer Vision Library.
https://github.com/itseez/opencv (2015).

