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Abstract—Recent advancements in the field of deep learning 
have enabled its application in Autonomous Driving Systems 
(ADS). A Deep Neural Network (DNN) model is often used to 
perform tasks such as pedestrian detection, object detection, 
and steering control in ADS. Unfortunately, DNN models could 
exhibit incorrect or unexpected behavior in real-world 
scenarios. There is a need to rigorously test these models with 
real-world driving scenarios so that safety-critical bugs can be 
detected before their deployment in the real world.  

In this paper, we propose a combinatorial approach to 
testing DNN models. Our approach generates test images by 
applying a set of combinations of some basic image 
transformation operations to a seed image. First, we identify a 
set of valid transformation operations or simply 
transformations. Next, we design an input parameter model 
based on the valid transformations and generate a t-way (t=2) 
combinatorial test set. Each test represents a combination of 
transformations, and can be used to produce a test image. We 
execute the test images on a DNN model and distinguish between 
consistent and inconsistent behavior using a relation. We 
conducted an experimental evaluation of our approach on three 
DNN models that are used in the Udacity challenge. Our results 
suggest that test images generated by our approach can 
effectively identify inconsistent behaviors and can significantly 
increase neuron coverage. To the best of our knowledge, our 
work is the first effort to use a combinatorial testing approach 
to generating test images based on image transformations for 
testing DNNs used in ADS.  

Keywords—Testing DNN models, Combinatorial Testing, 
Deep Learning Testing, Neural Network Testing, Testing Self-
driving cars, Testing autonomous vehicles 

I. INTRODUCTION 
Recent years have seen significant advancements in the 

field of deep learning. For traditional software applications, a 
developer explicitly writes the programming logic based on a 
specific set of requirements. In contrast, deep learning 
software applications use a deep neural network (DNN) to 
derive its decision logic from a training dataset, which 
typically includes a large number of data instances. Deep 
learning applications have exhibited an extraordinary ability 
to discover valuable insights and derive complex decision 
logic from the training dataset. They have been used to 
perform tasks, such as image recognition, object detection, 
and language translation, with a high degree of precision. 

Deep learning has been applied in many application 
domains that are considered to require human intelligence. In 
particular, deep learning plays a significant role in the 
operation of autonomous driving systems, where DNN 
models are used to perform tasks such as obstacle detection, 
pedestrian detection, steering control, perception and 
localization, and route planning. However, since DNN models 
are trained and evaluated using a training dataset, they may 

suffer from the generalizability problem. For example, an 
investigation into Uber's accident suggests that their driving 
software system failed to consider the scenario of jaywalking 
pedestrians [38]. Tesla's autopilot failed to distinguish 
between a bright sky and a white trailer crossing an 
intersection; the autopilot attempted to drive under the trailer 
resulting in a loss of life [34]. Accidents reported in [34, 38] 
suggest a critical need to rigorously test DNN models, 
especially using tests that imitate the real-world conditions 
and include corner-case scenarios.  

Recent work suggests that synthetic images generated 
using image transformation techniques can effectively 
identify the inconsistent behavior of DNN models [36, 44, 46]. 
Zhang et al. proposed a framework that uses a Generative 
Adversarial Network (GAN) based unsupervised technique to 
generate synthetic images that mimic the two extreme weather 
conditions (snow and rain) [46]. The findings from their study 
suggest that the DNN models used in the Udacity driving 
challenge exhibit several inconsistencies when executed with 
test inputs generated using their approach. Tian et al. 
demonstrated that testing the DNN model with synthetic 
images generated with basic image transformations can 
produce inconsistent behavior [36]. Their results suggest that 
synthetic images generated by combining different image 
transformations increase neuron coverage, a measure of 
proportion of neurons activated in a DNN model.  

This paper presents a combinatorial testing-based 
approach to generating test images to test DNN models. In our 
approach, we first identify a set of basic image 
transformations that do not change the ground truth of the 
image being transformed. That is, in principle, the prediction 
result for a transformed image produced by such a 
transformation is the same as the original image. (In practice, 
the prediction result of the transformed image may be different 
from that of the original image by a small amount that is less 
than a certain threshold.) We then use Combinatorial Testing 
(CT) to generate a t-way test set that covers every t-way 
combination of these transformations. Each test is a 
combination of transformations and can be used to create a test 
image.  

To address the test oracle problem, we consider how to 
identify inconsistent behaviors in two cases. In the first case, 
the ground truth of a test image remains the same as that of the 
original image. Thus, we consider that an inconsistent 
behavior is detected if the prediction result of a test image 
differs from that of the original image by an amount that is 
more than a threshold. In the second case, the ground truth of 
a test image may be different from that of the original image. 
Thus, the prediction result of a test image may be expected to 
be very different from that of the original image. In this case, 
we compare the prediction results of the same test image from 
different DNNs that perform the same prediction. An 



inconsistent behavior is detected if the prediction results of a 
test image from different models do not agree with each other.  

Our approach's novelty lies in the fact that we generate test 
images using CT. The key insight behind CT is that while the 
behavior of a system could be affected by many factors, 
individual failures are typically caused by a very small number 
of factors [21].  We hypothesize that this insight also applies 
to testing DNNs. That is, inconsistent behaviors of a DNN 
model could be triggered by a combination of a small number 
of basic image transformations. In another word, a t-way test 
set that covers every t-way combination of image 
transformation can be effective to detect inconsistent 
behaviors. 

We report an experimental evaluation of our approach 
using three of the top five models, namely Autumn [4], 
Chauffeur [7], and Rambo [29], from the Udacity self-driving 
challenge. We generate tests by applying t-way 
transformations to the seed images selected from the Udacity 
test dataset. Our results show that t-way tests can identify a 
number of inconsistent behaviors in these DNN models. For 
example, out of 121 t-way tests generated for a seed image, 29 
tests and 95 tests resulted in an inconsistent behavior for the 
Autumn model and Chauffeur model, respectively. Our results 
suggest that a small number of tests (121 tests) can 
significantly increase the cumulative neuron coverage 
compared to its baseline. In some cases, t-way tests covered 
more than ten times of additional neurons compared to their 
respective baseline. Overall, the results provide initial support 
for our hypothesis. The results indicate that t-way tests can 
help the practitioners to effectively test DNN models in terms 
of both detecting inconsistent behavior and increasing neuron 
coverage. 

Combinatorial testing is applied to test DNN models, as 
reported in [9, 23]. However, they follow a white box testing 
approach by testing the neurons' interactions within each layer 
in the DNN [23] and the effect of variable strength-based CT 
tests on interactions between pre-layer and post-layer neurons 
of the DNN [9]. To the best of our knowledge, we believe the 
work reported in this paper is the first effort to apply the 
combinatorial testing approach to generate test images by 
combining different types of image transformations to test 
DNN models used in autonomous driving systems. 

The remainder of this paper is organized as follows. In 
Section II, we provide a brief introduction to DNN based 
software systems and combinatorial testing. In Section III, we 
present our approach, in terms of the major steps performed in 
the testing process. In Section IV, we report an experimental 
evaluation, where we first report the design of the evaluation 
and then discuss the experimental results. Section V discusses 
the existing work that is related to ours. Section VI provides 
concluding remarks and directions for our future work. 

II. BACKGROUND 

A. DNN based software systems 
Deep learning is a machine learning technique that uses 

DNN to perform tasks such as classification and regression. In 
traditional software systems, a developer derives rules from 
the requirements and implements the rules in the form of 
program logic. In contrast, DNN based software systems 
derive their decision logic from an input dataset; the decision 
logic is referred to as a trained DNN model. The DNN model 

takes an input (either image or text depending on the domain) 
and produces an output in the form of a prediction.  

In recent years, DNN models are widely adopted across 
different domains such as medical imaging, language 
translation, and autonomous driving systems. They are 
increasingly deployed in safety-critical fields to perform tasks 
such as speech recognition, image classification, natural 
language processing. In particular, autonomous driving 
systems (ADS) use DNN models to perform tasks such as lane 
control, object identification, and pedestrian detection. For 
example, a DNN model used in the autonomous driving 
system takes an image from the camera as its input and 
predicts the steering angle. 

Based on the application domain, the practitioners use 
different types of DNN architectures to build a DNN model. 
Convolutional Neural Network (CNN), a type of neural 
network architecture, is widely used in the autonomous 
driving system as they exhibit a higher success rate (better 
accuracy) in image recognition. Recurrent Neural Network 
(RNN), a type of neural network architecture that uses 
temporal information to make predictions, is used in the 
autonomous driving system to predict steering angles based 
on a sequence of input data (temporal information). The 
subject models used in our experiments use a CNN to extract 
features from the input images that are passed to either an 
RNN or a fully connected network (FC-network) to predict the 
steering angle. 

B. Combinatorial Testing 
Combinatorial Testing is a black-box test generation 

technique. For a given system under test (SUT), combinatorial 
testing focuses on systematically testing the interactions 
among the system's different parameters with a smaller 
number of tests.  

Consider a program P with four parameters and each 
parameter having three values. To test program P, we will 
require 81 tests (3*3*3*3=81) to test all possible 
combinations (exhaustive test set). Compared to this, using a 
t-way combinatorial test set (t=2), it is possible to test all 
possible interactions between any two parameters (at least 
once) with nine tests. In general, combinatorial testing 
approach can significantly reduce the number of tests [10].   

ACTS, a combinatorial test generation tool, uses the IPOG 
algorithm to generate t-way tests. Consider a program P 
modeled with an input parameter model (IPM) with k 
parameters. For any t parameters (out of k) of P, IPOG 
algorithm generates a t-way test set to cover the first t 
parameters and then it generates additional tests (i.e., 
extending the test set) to cover the first t+1 parameters in an 
iterative manner until all the parameters are covered by the test 
set [43]. ACTS can generate t-way tests of strength t=2 
through t=6.  

III. APPROACH 
In this section, we present a combinatorial approach to test 

DNNs. Figure 1 presents an overview of our approach. The 
proposed approach is applicable for DNNs that take an image 
as an input and outputs a prediction. The goal of our approach 
is to generate synthetic images to test the pre-trained DNN 
model.  

In the first step, we identify basic image transformations 
that can be used to create synthetic test images. Geometric 



image transformation techniques such as linear 
transformations and affine transformations can be used to 
generate synthetic images. Applying a linear transformation to 
an image does not change the size or shape of the input image. 
In contrast, applying the affine transformation, the origins of 
the transformed image and the original image do not 
necessarily match with each other. In other words, applying 
the affine transformation shall result in a change of orientation 
and size of the original image. We represent a transformation 
in a two-tuple form (transformation name, transformation 
value). For example, (Brightness, 10) increases an image's 
brightness by a value of 10.  

In the second step, given the nature of the domain, the test 
input space for a DNN model can be too large (nearly infinite). 
Hence, we apply equivalence partitioning, and randomly 
select a seed image from each partition. For example, a test 
dataset (used in Autonomous Driving Systems domain) 
contains image frames recorded all around the year. In this 
case, we partition the test dataset based on the weather 
conditions such as sunny, rainy, fog, snow, overcast, and 
normal weather. We then randomly select an image (seed 
image) from each group.  

Our approach is aimed to generate valid test images 
(synthetic images). In the first step, we identified a set of 
transformations that could be applied to generate synthetic 
images. However, every transformation might not be 
uniformly applicable to seed images. In other words, given the 
type and nature of the seed image, applying certain 
transformations (identified from Step 1) might generate a 
synthetic image that is either unrealistic or invalid. For 
example, consider two seed images: image #1 captured during 
the middle of the day (brighter, sunny day) and image #2 
captured around the time of sunset during winter. We generate 
a synthetic image by applying a transformation -- decrease the 
brightness by 80% to both seed images. The resulting 
synthetic image for image #1 could be valid in terms that the 
image is viewable to human eyes. In contrast, the synthetic 
image for image # 2 might be invalid, since it could be a 
completely dark image. As this example illustrates, some 
image transformations when applied to a seed image might 
generate invalid test inputs. Note that, in this case, we consider 
image #2 as invalid. However, in real world, it is still 
important to test such scenarios using other approaches that 
deal with images that are completely dark. 

To alleviate this problem, in the third step, for each seed 
image, we identify a set of valid transformations (a subset of 
all possible transformations). We determine the validity by 
comparing the prediction results of the original image (Po) and 
the transformed image (Ps). For DNN models that outputs a 
continuous value (for example, a steering angle), the 

transformed image's prediction result may be different, within 
a degree of tolerance, from that of the original image.  
Therefore, a transformation is considered valid if the 
difference between Po and Ps is less than a certain threshold 
|Po – Ps| ≤ threshold. 

Consider the following example. We are testing a pre-
trained DNN model that predicts the steering angle. Contrast 
and Rotation are two possible image transformations, with 
five different values per transformation: (Contrast,1), 
(Contrast,2), (Contrast, 3), (Contrast, 4), (Contrast, 5), and 
(Rotation, 2°), (Rotation, 4°), (Rotation, 6°), (Rotation, 8°), 
(Rotation, 10°). Thus, there exists a total of ten possible 
transformations. We apply these transformations to the seed 
image and generate ten synthetic images. Then, the predicted 
value of a synthetic image is compared with the predicted 
value of the original image. Three transformations – (Contrast, 
5) and (Rotation, 8°), (Rotation, 10°) exceed the threshold. 
The remaining seven transformations are identified as valid 
transformations for the seed image. It is often the case that 
different seed images can have different sets of valid 
transformations. The motivation behind this step is to generate 
valid tests, thus minimizing false positives.  

In the fourth step, we generate t-way tests. For each seed 
image, we design an Input Parameter Model (IPM), where 
each transformation is identified as a parameter, and the 
transformation values that make a transformation valid are 
identified as parameter values. In our earlier example, 
Contrast: {1,2,3,4} and Rotation: {2°, 4°, 6°} are identified as 
parameters and values.  

In the final step, based on the IPM, we generate abstract t-
way test set.  Then, we derive concrete tests (synthetic images) 
by applying t-way image transformations to the seed images 
using the OpenCV framework [49]. The synthetic images are 
used to test the DNN models.  

One challenge in testing ML models is lack of a test oracle. 
In practice, data labeling is considered to be an expensive and 
challenging task. Thus, a tester might not be able to determine 
the ground truth of a synthetic image. In this case, the 
practitioners can compare the prediction value across different 
model implementations and identify the inconsistent behavior.  
Doing so can help practitioners assess a model's performance 
in the absence of ground truth. In our approach, we evaluate 
the t-way test results in the following two cases: 

 Case 1: The original seed image and t-way synthetic 
image share the same ground-truth value. In this case, for each 
model, if a test fails to satisfy the relation: |Po – Ps| ≤ 
threshold, the test is considered to exhibit inconsistent 
behavior.  

 
FIGURE 1 – APPROACH OVERVIEW  

 
 
 
 

 



Case 2: The original seed image and t-way synthetic image 
do not share the ground-truth value, i.e., they might have a 
different ground-truth value. In this case, we evaluate a test by 
comparing its prediction results across multiple models (Pm). 
It can be challenging to derive the ground truth for each test 
(synthetic image). Therefore, we define an inconsistent 
behavior as follows: A test exhibits an inconsistent behavior 
if the maximum difference in prediction change across 
multiple models exceeds a threshold value i.e., if a test fails to 
satisfy the following relation 

|max(Pm) −min(Pm)| ≤ threshold   (1) 

IV. EXPERIMENTS 
In this section, we present an experimental evaluation of 

our approach. The source code, data and/or artifacts have 
been made available at [31, 35] 

A. Research Questions 
Our experiments are designed to answer the following two 
research questions: 

• Can our combinatorial testing-based approach 
successfully identify inconsistencies among DNN 
model implementations? 

• How does the combinatorial testing-based approach 
impact the neuron coverage?  

B. Models 
We use open-source DNN models from the Udacity self-

driving car challenge. Teams participating in the Udacity self-
driving car challenge developed DNN models that predict the 
steering angle (output) based on an image frame (input).  
Submitted models were evaluated with the Udacity test dataset 
[30] and ranked based on their prediction accuracy 
(performance). Models from the Udacity self-driving car 
challenge are among the widely used subject models to 
evaluate test generation techniques for testing autonomous 
vehicle software systems [36][44][46][15]. 

Among the top five ranking models from the challenge 
that are publicly available at [40], we select three models, 
namely Chauffeur [7], Rambo [29], and Autumn [4] as our 
subject models. We did not use the other two models, namely, 
komanda [40] and rwightman [40]. For komanda, the pre-
trained model weight file is not accessible [20]. For 
rwightman, the publicly available script failed to execute [30]. 

• The Autumn model consists of three 5x5 
convolution layers with stride 2, followed by two 
3x3 convolution layers and five fully connected 
layers with a dropout [4]. The Autumn model is 
implemented using Tensorflow(v0.11) and 
Keras(v1.1.0) [1, 18]. 

• The Chauffeur model uses a Convolutional 
Neural Network (CNN) to extract features from 
the input image and use a Long Short-Term 
Memory (LSTM) network, a type of Recurrent 
Neural Network (RNN), to predict the steering 
angles. Chauffeur model is implemented using 
Tensorflow (v1.12) and Keras (v1.2.2) [1, 18].  

• The Rambo models consist of three CNNs to 
extract features, and their output is merged in the 
final layer to predict the steering angle.  The 

Rambo model is implemented using Tensorflow 
(v1.12) and Theano (v0.9) [1, 33]. 

For each subject model, the sequence of image frames that 
has been processed before the current frame impacts the 
prediction of the current frame. In Autumn, the prediction is 
based on five consecutive frames (input + four previous 
frames). Chauffeur's prediction is determined by 100 
consecutive frames (input + ninety-nine previous frames). 
Rambo considers three consecutive frames to make the 
prediction (input + two previous frames).  

We present the model details in Table I. The first and 
second column list the model name, and its network 
architecture. The third column presents the Root Mean Square 
Error (RMSE) value. RMSE is one of the widely used metric 
to measure the prediction errors of a machine learning model 
that outputs a continuous value. A lower RMSE value 
indicates better performance (prediction). All submitted 
models in the Udacity challenge were evaluated and ranked 
per RMSE value. In the last column, we present information 
about the number of sequence images that influence the 
current frame's prediction. 

Model 
Name 

Architecture 
Information 

RMSE 
Prediction Logic Reported 

RMSE 
Our 

RMSE 

Autumn CNN  0.04 0.04 
Previous 4 
frames + 
current frame 

Chauffeur CNN + RNN 0.06 0.06 
Previous 99 
frames + 
current frame 

Rambo CNN 0.06 0.06 
Previous 2 
frames + 
current frame 

TABLE I – MODEL INFORMATION 

C. Seed Images 
We select the seed images from the Udacity test dataset. 

The test dataset consists of 5614 test images and their 
respective steering angles [39]. The steering angle is in the 
range -25° to +25° and normalized to ±1° [36]. An image with 
a positive steering value indicates the vehicle is turning right. 
A negative steering value indicates turning left, while a 
steering angle of 0° or closer to 0° indicates the vehicle is 
traveling in a straight direction (i.e., no turns). 

The steering angle is in the range of -1 to +1. Based on the 
steering angle, we divide the test images into different groups 
with an interval of 0.1 per group. We have a total of 20 groups 
starting from (-1.0 < steering angle ≤ -0.9) through (0.9 < 
steering angle ≤ 1.0). We refer to these groups by Group 1 
through Group 20, respectively.  

The test dataset does not contain images in the range (-1.0, 
-0.9). Thus, there is no representative image from Group 1 in 
our experiments.  For the remaining nineteen groups, we 
randomly select one image from each group as our seed image. 
In total, we have nineteen seed images in our experiments.   

D. Test Oracle 
In the autonomous driving domain, it is hard to determine 

an exact steering angle for transformed images. Zhang et al. 
used a method to identify the DNN model's consistent 
behavior, and it is defined as follows: Given a transformed 
image as input, if the DNN model predicts (steering angle) 
within a certain error bound, the model is considered to exhibit 
a consistent behavior [46].  Similar to their work, we use the 



following relation: |Po – Ps| ≤ threshold and identify a model’s 
inconsistent behavior in two cases. Po denotes the steering 
angle of the original image and Ps denotes the steering angle 
of the transformed image. The threshold value is a 
configurable parameter, and we use the following three 
threshold values: 0.1, 0.2 and 0.3 in our experiments.  

 In the first case, we assume the t-way synthetic image and 
the original image shares the ground truth. Thus, a t-way 
synthetic image that violates this relation |Po – Ps| ≤ threshold 
exhibits an inconsistent behavior.  

 In the second case, we assume the synthetic image and the 
original image does not share the ground truth. In this case, we 
compare the prediction results of the same synthetic image 
from three DNNs that perform the same prediction. A t-way 
synthetic image exhibits an inconsistent behavior if it violates 
the relation (1). 

E. Metrics 
We measure our approach's effectiveness by computing 

the number of inconsistent behaviors identified by a t-way 
test set. The more inconsistent behaviors the t-way test 
detects, the more effective the t-way test is considered.   

We also use neuron coverage to measure the effectiveness 
of our approach. The notion of neuron coverage is defined as 
the ratio of unique neurons that is activated for a given input 
to the total number of neurons in a DNN [27]. A neuron is 
considered activated if its output is greater than a certain 
threshold (defined by the user). Tian et al. used neuron 
coverage in their experiments and made their artifacts 
publicly accessible [3, 36]. We use their neuron coverage 
framework and threshold (0.2) in our experiments. To 
measure the cumulative neuron coverage, we first load the 
seed image to the DNN and measure its neuron coverage. 
This coverage information is used as the baseline in our 
experiment.  Then, we execute the t-way images and calculate 
cumulative coverage relative to the baseline.  

F. Test Generation 
We begin the test generation step by identifying the 

possible image transformations applicable to the Udacity test 
dataset. Tian et al. applied a set of seven different types of 
simple image transformations to the Udacity test dataset and 
studied their impact on neuron coverage [36]. We use these 
seven image transformations. Table II presents the list of 
transformations and their values used in our experiments.  
Overall, we have seventy image transformations (7 different 
types of transformations * 10 values per transformation). 

Recall that, as discussed in section III, every possible 
transformation might not be uniformly applicable to all the 
seed images. Therefore, in the next step, we identify the set 
of valid transformations for each seed image.  

1) Identification of valid transformations 
We apply the seven types of transformations with ten 

different values per transformation and generate 70 synthetic 
images per seed image. Next, the seed image is loaded to three 
subject models, and their respective predicted steering angle 
is recorded (Po).  

Then, for each model, the synthetic images are loaded as 
input. Their predicted steering angle (Ps) is compared with the 
steering angle of the original seed image (Po). A 
transformation is considered to be valid if |Po – Ps| ≤ 0.1. At 

the end of this step, we identify the set of valid transformations 
per seed image. 

TABLE II – TRANSFORMATIONS AND VALUES 

2) Generation of t-way tests 
To create t-way tests, first, we create an input parameter 

model (IPM). The seven transformations from Table II are 
identified as parameters. Based on the valid transformations, 
we identify the set of possible values for each parameter. Next, 
based on the IPM, we generate abstract t-way tests using the 
ACTS tool [2]. In our experiments, we generate a 2-way 
combinatorial test set. Each test represents a combination of 
transformations that could be applied to the seed image. In the 
final step, we convert the abstract t-way tests to concrete tests, 
i.e., generate synthetic images based on t-way tests. Recall that 
each abstract test represents a combination of transformations. 
When we generate synthetic images, we apply image 
transformations in the following order – Blur, Brightness, 
Contrast, Rotation, Scale, Shear and Translation using the 
OpenCV framework [49]. (We tried to apply the 
transformations in different orders, and found that the order 
has minimal impact on the prediction outcomes.) We execute 
the subject DNN models with t-way concrete tests (i.e., 
synthetic images) and compare their output with the original 
image's predicted steering angle.  

G. Example 
We illustrate our approach with an example. For the seed 

image from group 2 (1479425660620933516.jpg), the three 
models, namely Chauffeur, Rambo, and Autumn, predict a 
steering angle -0.760681748390198, -0.62006545, and -
0.83253384, respectively (Po).  

In Step 1, we generate 70 synthetic images for 
1479425660620933516.jpg based on the transformations 
listed in Table II. Then, we execute the 70 synthetic images 
on three models and compare their predicted steering values 
(Ps) with their respective steering angle prediction of the 
original image (Po). 

In the case of the Chauffeur model, a transformation 
(synthetic image) is considered valid if |Po – Ps| ≤ 0.1; 48 out 
of 70 transformations satisfy the criteria and thus considered 
valid transformations for the chauffeur model. For the Rambo 
model, a transformation (synthetic image) is considered valid 
if |Po – Ps| ≤ 0.1; 57 out of 70 transformations satisfy the 
criteria. Likewise, for the Autumn model, a transformation is 
considered valid if the absolute value of |Po – Ps| ≤ 0.1, and 
33 transformations satisfy the criteria. Among the 70 

Transformations Values 

Blur 

Averaging 3x3, 4x4, 5x5, 6x6 

Gaussian 3x3, 5x5, 7x7 

Median 3, 5 

Bilateral (9, 75, 75) 

Brightness 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Contrast 1.2, 1.4, 1.6, 1.8, 2.0, 2.2., 2.4, 2.6, 2.8, 3.0 

Rotation 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 

Scale 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 

Shear (Horizontal) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 

Translation (10,10), (20,20), (30,30), (40,40), (50,50), 
(60,60), (70,70), (80,80), (90,90), (100,100) 



transformations, 28 transformations are valid across all three 
models, and hence these 28 transformations are used to 
generate t-way tests. 

In step 2, using the ACTS tool, we create the input 
parameter model with valid parameters and values identified 
from the previous step. Then, we generate 121 abstract tests 
from a 2-way test set. Next, we use the Open-CV framework 
[49] to generate concrete tests (2-way synthetic images). 
Finally, we test the subject models using concrete tests. 

H. Results and discussion 
First, we present the results of synthetic images generated 

using the transformations and values from Table II. These 
results are used to identify valid transformations that are later 
used in the generation of t-way tests. Next, we present the 
inconsistent behavior detection results of the t-way tests. 
Finally, we discuss the neuron coverage achieved by the t-way 
tests. 

1) Identification of Valid Transformations 
Figure 2 presents the details of valid transformations 

identified for each group. The x-axis presents the group 
details and the y-axis presents the number of possible 
transformations. In our experiments, we have 70 possible 
transformations (7 transformations * 10 values per 
transformations). Due to limited space, we present the 
number of valid transformations per group. Our results 
suggest that Group 10 has the maximum number of valid 
transformations, i.e., 50 out of 70 transformations are valid. 
Group 20 has the minimum number of valid transformations, 
i.e., only 16 out of 70 transformations are valid. We observe 
that all transformations Blur are valid across 18 groups. On 
the contrary, five transformations, namely Rotation_24, 
Rotation_27, Shear_0.4, Shear_0.5, and Shear_0.6 were 
invalid across all groups as they failed to meet our criterion 
(Po-Ps<=0.1 for all three models).  

2) Inconsistent Behavior Detection Results of t-way Tests 
In this section, we present the results of t-way synthetic 

images. We generate 2-way tests based on the set of valid 
transformations identified from the previous step for each 
group. Each test represents a combination of transformations 
that could be used to generate synthetic image. Then, we 
execute the 2-way tests in three subject models to identify the 
number of consistent and inconsistent behaviors among three 
DNN models. 

 

 
FIGURE 2 – NUMBER OF VALID TRANSFORMATIONS FOR EACH GROUP 

 
Results for Case 1: In this case, we assume that the 

original seed image and t-way synthetic image share the 
ground-truth value. Figures 3, 4, and 5 present the t-way test 
results for threshold values of 0.1, 0.2, and 0.3, respectively. 
Recall that we generate t-way tests per group, and the total 
number of t-way tests varies among the groups. Therefore, 

we present our results as a percentage of t-way tests that 
exhibit consistent behavior. The x-axis represents the group 
number. The y-axis represents the percentage of t-way tests 
that exhibit consistent behavior. The last column in Table III 
presents the total number of t-way tests generated for each 
group. 

For a threshold value of 0.1, our results indicate that 
Rambo is less prone to inconsistent behavior among the three 
subject models. As Figure 3 suggests, for eight groups (3, 7, 
9, 12, 13, 15, 16, and 20), t-way tests executed with the 
Rambo model do not display any inconsistent behavior (all 
tests result in a passing state). In addition to this, in groups 5, 
6, 14, and 18, more than 90% of the t-way tests executed with 
the Rambo model result in a consistent behavior. Apart from 
Group 10, the Rambo model exhibits a better prediction 
performance than the other two models. In the case of 
Chauffeur, more than 50% of t-way tests generated for seven 
groups (2, 7, 8, 9, 12, 14, 18) results in an inconsistent 
behavior; the lowest being Group 12 with a meager 16% of 
tests resulting in a consistent behavior. On the contrary, for 
the same group (Group 12), 96% of the t-way tests result in a 
consistent behavior for the Rambo model. Our results suggest 
that the Autumn model exhibits a mixed performance. In a 
few cases (Groups 6 and 10), more than 90% of t-way tests 
result in a consistent behavior state. On the contrary, for six 
groups (Group 2, 3, 8, 17, 18, 20), the Autumn model 
produces an inconsistent behavior for more than 50% of the 
t-way tests. 

Figures 4 and 5 suggest an increase in the threshold value 
results in better performance, i.e., a higher number of 
consistent behaviors across three models. In the case of 
Rambo, with a threshold of 0.2, in most cases, all t-way tests 
generated exhibit a consistent behavior (16 out of 19 groups). 
However, for the rest of the two models, we observe that 
more than 25% of t-way tests still result in inconsistent 
behavior for some groups.  For example, group 14, 17, 18, 
and 20 for Autumn, group 2, 8, 9, 12, 16, and 18 for Chauffeur 
(threshold 0.2).  We observe a similar pattern for threshold 
0.3. Overall, the results suggest that the Rambo model 
exhibits better performance than the other two models. 

Results for Case 2: Recall that in this case, the original 
and t-way synthetic images might have a different ground-
truth value. We evaluate the t-way test results with three 
threshold values: 0.1 (2.5°), 0.2(5°), and 0.3 (7.5°). Table III 
presents the results. The first column lists the group number. 
The next three columns present the number of t-way tests 
exhibiting inconsistent behavior for thresholds of 0.1, 0.2, 
and 0.3, respectively. The last column presents the total 
number of t-way tests for each group. 

The result suggests that t-way tests can detect a significant 
number of inconsistent behaviors across different thresholds. 
For a threshold of 0.1, in 18 (out of 19) groups, 50% or more 
tests result in inconsistent behavior. In 12 (out of 19) groups 
more than 90% of tests results in inconsistent behavior.  

Our results indicate that an increase in the threshold value 
results in a decrease in the number of inconsistent behaviors. 
This is as expected. With a threshold of 0.3 (7.5°), for four 
groups (Group 5, Group 12, Group 13, and Group 15), less 
than 3% of tests resulted in inconsistent behavior. This 
indicates that a further increase in threshold might result in a 
large number of false negatives. Therefore, we did not 
consider a threshold value that is larger than 0.3. 
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Overall, the results suggest that t-way test set are effective 
in identifying model inconsistencies. We acknowledge that 
both Case 1 and Case 2 have limitations. In Case 1, in some 
scenarios, determining the ground truth for a synthetic image 
generated from a t-way test set can be a challenging task (lack 
of test oracle). In Case 2, given the nature of differential 
testing, a model inconsistency can be detected only if (1) 
there exist at least two or more models implementing the 
same functionality, and (2) at least one model producing a 
different result. A practitioner shall choose between Case 1 
and Case 2 based on their domain knowledge. 

Overall, the results suggest that t-way tests are effective 
in identifying model inconsistencies. 

 

3) T-way tests and their impact on Neuron Coverage  
In this section, we present the neuron coverage achieved 

by t-way tests for the Rambo model. The Rambo model 
consists of 3 CNN sub-models referred to as S1, S2, and S3, 
and they consist of a total of 1625, 3801, and 13473 neurons, 
respectively [36]. Overall, the Rambo model consists of 
18899 neurons.  

Table IV presents the neuron coverage for the seed 
images (baseline). The results indicate that most of the seed 
images (17 out of 19) cover approximately 10% of the total 
neurons, while Group 10 and Group 11 cover 73.29% and 
71.78% of the total neurons, respectively. 

Next, we present the neuron coverage achieved by the t-
way tests in Figures 6, 7, 8, and 9. The x-axis represents the 
group number. The y-axis represents the percentage of 
additional neurons covered by the t-way tests compared to 
their respective baseline. Results suggest that t-way tests 
result in a significant increase in neuron coverage. In the case 
of S1, we notice a moderate increase in the additional number 

of neurons covered compared to the baseline. The result 
presented in Table IV indicates, amongst the nineteen groups, 
the seed image representing Group 17 achieves the least 
coverage for S1 with 460 neurons. The t-way tests generated 
for group 17 cover an additional 25% of neurons (113 
neurons) compared to its baseline. Similarly, in sub-model 
S2, across groups, we notice a substantial number of 
additional neurons covered by the t-way tests; seven groups 
covering more than 50% of additional neurons compared to 
their respective baseline. 

 
TABLE III – NUMBER OF INCONSISTENT BEHAVIOR IDENTIFIED BY T-WAY TESTS 

(CASE # 2) 

We observe that t-way tests achieve a significant increase 
in neuron coverage for sub-model S3. Out of 19 groups, t-
way tests generated for eleven groups achieve more than one 
hundred percent increase in cumulative neuron coverage; six 
groups (Group 2, 7, 8, 9 12, 13) achieve more than ten times 
increase in cumulative neuron coverage. On the contrary, t-
way tests for two groups - Group 10 and Group 11 cover a 
significantly lesser number of additional neurons. This can be 
explained as follows: for sub-model S3, the seed images 
representing Group 10 and 11 cover 95.91% and 94.01% 
neurons. Hence, their respective t-way tests result in a 
marginal increase in neuron coverage. 

Overall, the result suggests that t-way tests increase the 
neuron coverage significantly. In some cases, the results 
suggest a smaller number of t-way tests (120 tests) can cover 
more than ten times of additional set of neurons. 
 

FIGURE 3 - T-WAY RESULTS FOR THRESHOLD 0.1 (CASE #1) 

FIGURE 4- T-WAY RESULTS FOR THRESHOLD 0.2 (CASE #1) 

FIGURE 5- T-WAY RESULTS FOR THRESHOLD 0.3 (CASE #1) 

Group Number 
# of inconsistent behaviors per 

threshold Total # of 
Tests 0.1 0.2 0.3 

2 119 102 69 121 

3 107 89 53 110 

4 100 45 13 110 

5 86 29 0 121 

6 102 65 27 102 

7 120 86 23 122 

8 114 95 55 121 

9 109 95 75 121 

10 96 54 27 121 

11 66 39 27 122 

12 91 15 3 126 

13 95 30 4 121 

14 102 85 36 122 

15 44 7 0 121 

16 121 118 85 121 

17 121 110 78 121 

18 54 47 35 55 

19 55 52 34 55 

20 30 23 18 33 
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We acknowledge that the neuron coverage results are 

unavailable for the remaining two models due to time 
limitations.  On executing the Chauffeur model with a batch 
of 100 images, the current version of the framework, on 
average takes 18 minutes to measure the neuron coverage. So, 
t-way tests for a group (with 121 tests) takes around [ 
(121*18)/60 = 36 hours]. It will take weeks to complete the 
coverage measurement for all nineteen groups. We plan to 
study the impact of t-way tests on neuron coverage of 
Autumn and Chauffer model as a part of future work. Also, 
we plan to investigate the correlation between neuron 
coverage and fault detection as a part of future work.  

I. Threats to validity 
Threats to external validity occur when the results from 

our experiments could not be generalized to other subjects. 
The DNN models used in our study have been used in other 
studies [36, 44, 46, 15]. All three DNN models used in our 
experiments have different architectures, thus alleviating the 
risk of lack of DNN architectures (representativeness) used 
in our study. 

Threats to internal validity are factors that may be 
responsible for the experimental results, without our 
knowledge. To mitigate the risk of human errors, we tried to 

automate as many tasks as possible, from generating 
synthetic images to executing the tests. Also, we have 
manually checked some of the results whenever any 
inconsistent or surprising results occur. For example, out of 
121 tests generated for a seed image (group 8), 72.73% 
percentage of tests results in a consistent behavior for Rambo 
model. In contrast, the other two models had less than 50% 
of the tests resulting in a consistent behavior. In such 
scenario, we manually verified the results by analyzing the 
log file. 

V. RELATED WORK 
We first discuss the existing work related to testing DNN 

based software systems. Traditional testing techniques such as 
coverage-guided testing [26, 36, 42], concolic testing [32], 
mutation testing [24], differential testing [27], combinatorial 
testing [9, 23] have been applied to test DNN models. We 
focus on the existing work reported in applying combinatorial 
testing (CT) to test machine learning systems as they are most 
relevant to our work.  

Ma et al. proposed DeepCT, a combinatorial testing 
coverage guided test generation technique to test the 
robustness of the DNN model [23]. DeepCT follows a white 
box testing approach by testing the interactions of the neurons 
within each layer in the DNN. Similarly, Chen et al. apply 
variable strength combinatorial testing to test DNN models. 
They propose three different methods to construct variable 
strength-based CT tests and study their effect on interactions 
between pre-layer and post-layer neurons [9]. In contrast, we 
apply CT as a black-box approach to generate test images and 
detect potential predictions errors of DNN models used in 
autonomous vehicle software systems.  

Li et al. proposed an ontology-based test generation 
framework for testing autonomous driving systems [22]. In 
Step 1, they construct an ontology based on the autonomous 
driving domain. In Step 2, they convert an ontology to a 
combinatorial test input model using conversion algorithms. 
Next, based on the test input model, they generate abstract 
tests that are used to create concrete tests. In Step 3, they 
execute the concrete tests and evaluate their results.  Gladisch 
et al. proposed a combinatorial testing approach to generate a 
test dataset for testing perception functions [14].  They use 
SCODE [12] to convert a domain model to an input test model 
for PICT, a pair-wise test generation tool [17]. Using PICT, 
they generate abstract test cases that are later converted to 
concrete tests (test images).  

Similar to [14, 22], we also develop an input parameter 
model (IPM), generate abstract t-way tests (based on the IPM), 
generate, execute and evaluate the concrete tests. Our work 
differs in the following way: Li et al. develop an input test 
model based on the road parameters such as slop, surface, and 
lane type. Gladisch et al. generate input test model based on 
the traffic scenarios such as daytime, sky conditions, rain, 
reflection on road etc.  In contrast, we develop an IPM based 
on the seven image transformations techniques namely blur, 
brightness, contrast, rotation, scaling, shearing and translation. 

Next, we discuss the existing literature on testing 
autonomous vehicle software systems. A significant amount 
of work has been reported on testing autonomous vehicle 
software systems [11, 13, 15, 19, 25, 27, 36, 37, 46, 47, 48].   
Pei et al. proposed a technique to generate synthetic test inputs 
using a joint optimization problem to test DNN models used 

GROUP 
NUMBER 

NUMBER OF COVERED NEURONS  
S1 S2 S3 TOTAL 

2 500 449 802 1751 
3 501 452 1113 2066 
4 497 416 722 1635 
5 501 428 827 1756 
6 496 445 718 1659 
7 492 433 1153 2078 
8 485 461 778 1724 
9 483 438 795 1716 

10 468 461 12923 13852 
11 475 424 12667 13566 
12 463 442 960 1865 
13 465 422 808 1695 
14 471 430 904 1805 
15 467 459 806 1732 
16 466 433 1224 2123 
17 460 466 822 1748 
18 480 456 1176 2112 
19 486 422 3801 2118 
20 469 447 1189 2105 

TABLE IV – NEURON COVERAGE OF SEED IMAGES (RAMBO) 

 

 
FIGURE 6 –S1 

 

 
FIGURE 7 – S2 

 

 
FIGURE 8 – S3 

 

 
FIGURE 9 – RAMBO MODEL 
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in autonomous vehicle systems [27]. Tian et al. proposed an 
approach to generate test inputs (synthetic images) by simple 
image transformations [36]. Yan et al. presented an approach 
that generates tests by Adaptive Random Testing (ART) 
technique and uses an Adaptive Random Testing for Deep 
Learning Systems (ARTDL) algorithm that selects test input 
using a distance metric known as Feature-based Euclidean 
Distance (FED) to test the model under test [44]. Zhang et al. 
proposed an unsupervised image-to-image transformations 
framework based on Generative Adversarial Network (GAN) 
that generates synthesized test inputs that mimics two weather 
conditions, namely snow, and rain, to test the DNN model 
[46]. Haq et al. presented an empirical comparison of offline 
testing (testing the DNN model as an individual component) 
and online testing (testing the DNN model as a part of a 
software system) of DNN models used in autonomous driving 
systems [15].  

Similar to our work, existing work reported in [15, 27, 36, 
44, 46] have used the Udacity driving challenge-2 datasets to 
evaluate their respective approaches. Also, our work is similar 
to [36, 44, 46], in terms of generating test inputs by image 
transformations and testing and evaluating the DNN models 
using metamorphic relations. However, our work differs in the 
following way.  Tian et al. [36] primarily study the impact of 
synthesized images (generated by combining different 
transformations) on the neuron coverage. In contrast, our work 
focusses on evaluating the impact of synthesized images on 
the model's prediction. The work presented in [15] compared 
the offline and online testing of DNN systems. It investigated 
the possibility of testing DNN's by replacing the original 
dataset with simulator-generated datasets. In contrast, our 
work explores the possibility of generating test inputs using a 
combinatorial testing approach to detect prediction errors in 
DNN models. Zhang et al. use an unsupervised network that 
uses GAN to generate synthesized test inputs that mimic 
different weather conditions [46]. Compared to [44, 46], our 
work is focused on generating tests using a combinatorial 
testing approach, i.e., generating synthesized images by 
combining different images transformations. To the best of 
our knowledge, ours is the first work that applies 
combinatorial testing techniques to generate t-way synthetic 
images for testing DNN models used in autonomous driving 
software systems. We also note that there is a significant 
number of existing studies in literature, and we refer the reader 
to [45] for a comprehensive report on existing work on testing 
machine learning systems.  

VI. CONCLUSION AND FUTURE WORK 
 In this paper, we present a combinatorial testing-based 
approach to systematically generate test images to test DNN 
models used in the autonomous driving systems. We begin our 
approach, by applying basic image transformations on the 
seed image (original) and identifying a set of transformations 
that do not change the ground truth of the image being 
transformed as valid transformations. Then, based on the valid 
transformations, we develop the IPM and generate t-way tests 
each of which is applied to the seed image to generate an 
synthetic image. We identify inconsistent behaviors of DNN 
models in two scenarios: (1) the original and synthetic image 
share the ground truth and (2) the original and synthetic image 
does not share the ground truth.  

 We performed an experimental evaluation of our approach 
with three publicly available pre-trained DNN models and 
datasets from the Udacity self-driving challenge. Our results 

indicate, for scenario 1, Rambo model exhibits a better 
performance, i.e., less prone to inconsistent behavior, 
compared to the other two models. For scenario 2, synthetic 
images generated by combining a set of image transformations 
(t-way tests) can successfully identify inconsistent behavior 
among models. With a threshold of 0.1, more than 90% of test 
cases from 12 groups result in an inconsistent behavior.  

 Result suggests t-way tests significantly increases the 
neuron coverage for the Rambo model.  Out of the 19 groups, 
synthetic images generated for 17 groups, result in a moderate 
to significant increase in cumulative neuron coverage; nine 
groups (Group 2, 6, 7, 8, 9, 12, 13, 14, 17) achieves more than 
one hundred percent increase in cumulative neuron coverage. 
Given the time-intensive nature of the measurement process, 
we are unable to measure the neuron coverage for the 
remaining two models. We plan to complete the measurement 
as a part of future work.  

 This is part of our larger effort in applying combinatorial 
testing to test DNN based systems. We plan to include 
additional weather-based transformations such as rain, fog, 
smog, and shadows to generate test images.  We hope to 
leverage the insights gained from this study to refine our input 
parameter model, develop realistic and meaningful constraints 
and thus generating more effective t-way tests to test DNN 
based systems. Also, we plan to extend this work by 
investigating how the combinatorial testing-based approach 
can be adopted in testing different versions of the DNN 
models in regression testing. 
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