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Abstract—When a failure occurs in a big data application, 
debugging with the original dataset can be difficult due to the 
large amount of data being processed. This paper introduces a 
framework for effectively generating method-level tests to 
facilitate debugging of big data applications. This is achieved by 
running a big data application with the original dataset and by 
recording the inputs to a small number of method executions, 
which we refer to as method-level tests, that preserves certain 
code coverage, e.g., edge coverage. The inputs of these method-
level tests are further reduced if needed, while maintaining code 
coverage. When debugging, a developer could inspect the 
execution of these method-level tests, instead of the entire 
program execution with the original dataset, which could be 
time-consuming. We implemented the framework and applied 
the framework to seven algorithms in the WEKA tool. The initial 
results show that a small number of method-level tests are 
sufficient to preserve code coverage. Furthermore, these tests 
could kill between 57.58% to 91.43% of the mutants generated 
using a mutation testing tool. This suggests that the framework 
could significantly reduce the efforts required for debugging big 
data applications.   

Keywords—Testing; Unit Testing; Big Data Application 
Testing; Test Generation; Test Reduction; Debugging; Mutation 
Testing; 

I. INTRODUCTION 
Big data applications are software programs that process 

massive amounts of data. Debugging big data applications can 
be more complicated and time-consuming. For programs with 
much smaller inputs, they often take a lot less time to execute 
comparing to big data applications. When a failure occurs 
while executing a program with their original dataset, programs 
with smaller dataset are often easier to debug by using the 
system-level inputs as tests; developers can debug the 
suspicious methods one execution at a time. However, it can be 
challenging for big data applications, because of the long 

execution time, a large number of method executions, and/or a 
large number of different variables to be inspected in the 
method. For example, a classification algorithm DecisionTable 
that is implemented in the WEKA tool [20], takes over two 
hours to execute the Heterogeneity Activity Recognition 
Dataset from the UC Irvine (UCI) Machine Learning 
Repository[21]. One of the DecisionTable’s methods, 
updateStatsForClassifier with 66 lines of code (not including 
comments and spaces) were executed over half a billion times. 
Furthermore, each execution was passed with a unique 
combination of values of its input variables. If a failure 
occurred during real-world usage of such systems and 
developers need to investigate such methods, debugging the 
system with the failing system-level input can be very 
expensive to accomplish.  

Some approaches have been proposed to reduce the effort 
required for testing and debugging big data applications at the 
system level [5, 8, 9, 10, 11]. For example, data mining and 
machine learning techniques are used to reduce the size of the 
real dataset or generate synthetic datasets [9, 10] for the testing 
purpose. However, when debugging on the system level with 
the real dataset, such methods are less likely to provide 
assistance for reducing the dataset. Debugging approaches such 
as delta debugging [14] can identify the minimum failure-
inducing inputs at the system level, which can reduce the size 
of the inputs while preserving the failure that the real dataset 
triggered. However, delta debugging can be very expensive in 
practice. This is because it requires the input data be 
recursively split into smaller chunks, and individual and 
combinations of chunks need to be repeatedly executed at the 
system level until a minimal failure-inducing input is 
identified. For big data applications, due to their input size and 
execution time, delta debugging may have to execute almost 
exhaustively with a very large number of different 
combinations of inputs on the system level, which can be 
impractical to use. In such situations, developers would likely 



have to randomly debug some method executions or just by 
guessing to investigate the suspicious methods. Providing 
developers a small set of simpler method executions that would 
likely be sufficient to trigger the fault they are looking for 
would give developers a big head start on the debugging, and 
could potentially save developers a lot of time and efforts.    

Our approach consists of mainly two steps, generating 
method-level tests from a failed system-level execution while 
preserving a given code coverage, e.g., edge coverage [19], and 
reducing the size of the method-level tests using our binary 
reduction technique. The main idea is to evaluate each method 
execution based on specific coverage criteria, such as statement 
coverage, edge, node and different types of path coverage 
based on Control Flow Graph (CFG) [19], note that other 
coverage criteria, e.g., prime-path coverage[19], could also be 
used in our approach. We record the method executions as 
method-level tests when they cover any new coverage elements 
with respect to the chosen coverage criterion. So only the 
necessary method executions concerning the selected criterion 
will be executed later for debugging purposes instead of the 
entire system. Furthermore, we reduce the inputs of method-
level tests with large collection typed variables using a binary 
reduction technique that is inspired by binary search, to select 
the minimal inputs that still preserve the coverage criterion 
covered by the originally recorded method-level tests. Based 
on the coverage criterion we choose, a much smaller set of 
method-level tests can effectively detect the fault that may 
have caused the failure observed at the system level.  

Consider the updateStatsForClassifier method in the 
DecisionTable implementation. Recall that it consists of 66 
lines of code. When the DecisionTable implementation was 
executed with the Heterogeneity Activity Recognition Dataset 
from the UC Irvine (UCI) Machine Learning Repository[21],  
the method was executed for 557,305,280 times. However, 
recording only three, five and nine method-level tests was 
sufficient to achieve the same edge, edge pair and edge set 
coverage as the original 557,305,280 method executions, with 
a mutant killing rate ranging from 86.07% to 86.89%. The 
edge, edge-pair, and edge-set coverage are defined in Section 
II-A. Mutation testing is defined in Section III-D. The 
framework we implemented will analyze and record necessary 
method executions at runtime with a relatively small overhead 
depending on the number of the method executions, and the 
size of the method-level inputs to be serialized. Our framework 
will significantly reduce the number of method executions that 
developers have to manually inspect while maintaining a high 
probability that the recorded method-level tests can detect 
potential fault(s) in the suspicious methods.     

In our experiments, we selected seven methods from four 
machine learning algorithms that were implemented in WEKA 
using Java. The four machine learning algorithms from WEKA 
and two datasets from UCI dataset repository were selected 
based on the execution time and size of datasets. Method-level 
tests were recorded for these seven methods based on the edge 
coverage, edge-pair coverage, and edge set coverage. On 
average, 4.4 tests were recorded for edge coverage, 5.9 tests for 
edge-pair coverage, and 18.6 tests for edge-set coverage. While 
initially, the seven methods were executed from 191 to half a 
billion times. For some of the recorded method-level tests with 

large inputs, such as the previously mentioned 
updateStatsForClassifier method from the DecisionTable 
implementation. We further reduce the size of these large 
inputs using a binary reduction technique to select their 
minimal subset that preserves the same coverage elements the 
original recorded method-level test covers. The average input 
size for updateStatsForClassifier is reduce to 12.53 MB from 
1269.76 GB. The efforts and time required from developers are 
further reduced using our binary reduction technique. 

Moreover, the test effectiveness was evaluated using PITest 
(PIT) [24], a commonly used mutation testing tool. All 25 
available mutant generators were enabled for mutant 
generation. When combining tests generated for the edge, 
edge-pair, and edge-set coverage, the mutant killing rate is 
ranging from 57.58% to 91.43%. The two methods 
select_working_set and selectModel with lowest mutant killing 
rate of 78.91% and 62.88% for their edge-set coverage tests are 
further investigated by comparing the mutation testing result 
differences between these two methods, and their original 
system-level execution.  

We summarize the contribution of the paper as follows:  

• We present a new framework to debug big data applications 
using method-level tests efficiently.  When a failure occurs on 
the system level for big data applications, by utilizing different 
test effectiveness measurements, our framework can generate a 
small number of tests that are effective in detecting faults for 
debugging.  

• We present a binary reduction technique that can effectively 
reduce the size of method-level tests and preserve the selected 
coverage elements, which further reduces the efforts and time 
required from developers for debugging.  

• We implemented our framework and conducted experiments 
on seven methods from four different machine learning 
algorithms’ implementations. The implementation currently 
requires manual code analysis and instrumentation of a few 
lines of code to record method-level tests. The code analysis 
and instrumentation can be later fully automated. Executing the 
recorded method-level tests have been fully automated.  

The rest of the paper is organized as follows. Section II 
presents the details of our approach and implementation. The 
experimentation design and results are summarized in Section 
III. Section IV reviews the related works, and finally, Section 
V concludes this paper and our future work. 

II. APPROACH  
 Our approach consists of two major steps, recording 
method-level tests and reducing the size of the recorded tests. 
In this section, Section II-A presents our approach to recording 
method-level tests based on a given coverage criterion. Section 
II-B presents our approach to reducing the size the recorded 
tests.  

A. Record Test 
Once a failure occurs, a developer typically identifies 

several suspicious locations based on his or her understanding 
about the program. Next, the developer could set up 



breakpoints in these locations and then start the debugging 
process with the system-level inputs. The breakpoints allow the 
developer to inspect the program state during the debugging 
process. This approach may not be effective for big data 
applications. This is because when the dataset is large, a 
breakpoint may be executed for a large number of times before 
an incorrect program state is found, and each breakpoint has to 
be inspected manually.  

In our approach, the developer first identifies suspicious 
methods, in a way that is similar to the identification of 
suspicious locations. Next, our approach runs the program with 
the original dataset and records, for each suspicious method, a 
small number of method executions, which we refer to as 
method-level tests, based on a specific coverage criterion. The 
method-level tests recorded for a given method achieve the 
same coverage criterion as the original dataset for the method. 
The developer can then debug each method with the recorded 
method executions, instead of a potentially large number of 
method executions. Since the same coverage criterion is 
satisfied, there is a high probability that debugging these 
recorded method-level tests would allow us to detect the fault 
that may have caused the failure observed at the system level. 

 

Fig. 1. Recording Process at Runtime 

After the developer identifies a list of suspicious methods 
to be recorded, we instrument these methods to capture the 
coverage elements that need to be covered for the selected 
coverage criterion. After instrumentation, our recording 
process at runtime is shown in Figure 1. While re-executing the 
failing system-level execution, each method execution of the 
suspicious methods is evaluated to determine whether it is 
significant based on the selected coverage criterion. A method 
execution is considered to be significant if it covers at least one 
new coverage element. When a method execution is deemed to 
be significant, its corresponding input for reproducing the 
method execution is recorded as a method-level test. 
Otherwise, the execution will continue until it reaches the next 
significant method execution.  

 In this paper, we will use edge coverage [19], edge-pair 
coverage [19], and edge-set coverage, as the coverage criteria 
based on Control Flow Graph (CFG) to determine if a given 
method execution is significant. A CFG is a representation, 
using graph notation, of all paths that might be traversed 
through a program during its execution, captures information 
about how the control is transferred in a program. In a CFG, 
each node in the graph represents a basic block, i.e. a sequence 
of consecutive statements with a single entry and a single exit 
point[19]. Such as shown in Figure 2. A directed edge[19] 
represents the control flow from one node to another. And a 

path[19] is a sequence of nodes, where each pair of adjacent 
nodes is an edge. Note that when edge-set coverage is used, a 
method execution is considered significant if it covers a unique 
set of edges, i.e., no other method executions exactly cover the 
same set of edges. Also note that other coverage criteria, e.g., 
prime-path coverage [19], could also be used in our approach.  

 

Fig. 2. Example of Control Flow Graph 

To record method-level tests, three major tasks need to be 
accomplished, including instrumentation, method execution 
evaluation, and serialization. We further discuss the 
implementation of these tasks in the following subsections.  

1) Instrumentation 
We first analyze the source code based on the selected 

coverage criteria using Control Flow Graph (CFG). Instead of 
manually drawing CFG for each suspicious method, we used a 
tool called Atlas [23], which is an Eclipse plugin tool 
developed by EnSoft Corp. Atlas can automatically generate 
CFGs based on the source code of a selected method. The 
CFGs generated by Atlas uses each line of code as a basic 
block. This is different from the classical definition [19] that a 
basic block consists of a sequence of consecutive statements 
with a single entry and a single exit point. As an example, a 
simple method and its CFG generated using Atlas is shown in 
Figure 3. We modify the generated CFGs from Atlas by 
combining blocks that are in a consecutive sequence without 
inner branches. Doing so reduces the amount of 
instrumentation and thus the runtime overhead when executing 
the instrumented code. The red rectangle in Figure 3 marks the 
lines of code combined to be a basic block as we previously 
defined. 

 

Fig. 3. Example of Modifying Generated Control Flow Graph 



Once we have the CFGs that represents the suspicious 
methods, we will instrument these methods by adding a few 
lines of code that invokes our recording program. Figure 4 
shows an example of how our implementation instruments a 
sample method. The highlighted statements are extra code 
added by instrumentation. The code from line 3 to line 10 
initializes the recording process. They are inserted at the 
beginning of the suspicious methods. The ParaArray contains 
the list of input parameters used for a method execution. The 
ParaTypeArray contains the object types of the input 
parameters, which are needed to reload the recorded inputs 
using Java Reflection. When recording a method execution, we 
record not only the input parameters, but also the object where 
the suspicious method was invoked from, to store the instance 
variables accessed during the execution as well. They are 
loaded into our system using the “R.loadInputs(ParaArray, 
this);” statement.  The statement “R.enterBlock(#number);” is 
added before each basic block to record the index of the basic 
block when it is executed. Moreover, the statement 
“R.endOfProcess();” is added before each return statement or 
at the end of a method to notify our program a method 
execution is completed, and start the method execution 
evaluation process.  

 

Fig. 4. Example of Instrumentation 

  Recording basic block indexes with multiple entrances at 
runtime requires different instrumentation as we previously 
described. As the example shown in Figure 4, lines 25 to 26 
and lines 30 to 31 are the extra codes added for recording the 
basic block contains line 24.  To record the basic block indexes 
correctly for basic blocks with multiple entrances such as for 
while loop, for loop, else if, and switch statements, etc., we are 
inserting the “R.enterBlock(#number);” statement before its 
descendants’ “R.enterBlock(#number);” statement based on the 
CFG to capture every exercise of such blocks.  

2) Method Execution Evaluation 
In our program, we temporarily store the covered edges, 

edge-pairs, and edge-set for each method execution. We 
consider a method execution to be significant, and thus record 
the execution as a method-level test if it covers any edges, 
edge-pairs or edge-set that have not been covered before. Note 
that we check for uncovered edges first for each method 
execution. This is because if a method execution covers any 
edges that have not been covered before, it must cover some 
new edge-pair(s) and a new edge-set. The time complexity for 
evaluating each method executions is O(n2) where n represents 
the number of coverage elements each method execution has to 
evaluate. For each method execution, each coverage element of 
the method execution will be compared to the list of the 
previously covered elements. If a method execution covers any 
new coverage element, the method execution will be recorded, 
and the newly covered elements will be added to the list.  

3) Serialization 
Once a method execution is determined to be significant, 

we will record the inputs of the method execution using 
serialization. Serialization is generally an expensive process, 
especially for the built-in serialization method that Java 
provides. There are other tools [27] developed by third-parties 
for serializing Java objects at a much faster speed such as 
serializing Java objects into JSON, XML files. However, 
many of these alternative serialization methods have some 
limitations. For example, some serialization methods [27] do 
not work when objects contain circular references or there is 
no constructor. Java default serialization does guarantee that if 
a class implements Serializable, its objects can be correctly 
serialized and deserialized. We used a tool called FST [25] 
that can be ten times faster [25]. In our experiments, FST 
performed significantly faster than Java built-in serialization. 
Furthermore, FST is the only alternative tool that can correctly 
serialize and deserialize all the objects in the subject programs 
used in our experiments.   
 After using FST to improve the performance of our test 
recording, there is still a situation where we experience 
significant overhead. To ensure an exact copy of the inputs is 
created, we perform deep copy on objects by serializing and 
deserializing the object. Most of the stored inputs will not end 
up become recorded after the evaluation of method executions. 
Much of the time spent to store deep copied objects are 
unnecessary. And these unnecessary time can be huge when a 
method takes large inputs, and/or been executed for a large 
number of times. We store and perform deep copy on inputs is 
because the value of an input object could potentially change 
during a method execution, especially for void methods that 
operate on instance variables, we need to store the inputs of the 
method execution before the execution starts. For 
buildClusterer and EM_Init, this recording approach took less 
than 18% overhead to the original system-level execution, and 
the recording can be completed by executing the entire 
program once. However, the overhead can be as high as 7 to 30 
times the original system-level execution time for recording 
tests of the other five selected methods. In such cases, our 
solution is recording the method-level tests by executing the 
entire system twice. In the first execution, we will not store any 
inputs. Instead, we only record the ID of a significant method 



execution. In the second execution, we only serialize the 
selected method executions to store their inputs as method-
level tests. Doing so can significantly reduce the runtime 
overhead in cases where a method takes large inputs or is being 
executed for a large number of times. In our experiments, the 
overhead was reduced to near in average 2.5 times the original 
system-level execution from 7 to 30 times for five of our 
selected methods.  

B. Test Reduction 
While the recorded method-level tests can be used for 

debugging, these tests in some case consist of very large 
inputs. For example, for three (selectModel, 
updateStatsForClassifier, cutPointsForSubset) of the selected 
methods during our experiments, we recorded a total of 35 
method-level tests. Their inputs have the average size of 
1.45GB, and total over 50GB.  Executing these tests can take a 
lot of time. And breakpoints in loop statements can be executed 
for a large number of times. These inputs are large mostly due 
to the fact that they contain large collection typed variables. 
Such as for the above mentioned three methods, they all have 
Instances typed (Implements Collection) variables that contain 
instances from the original dataset for processing. Some of the 
recorded data could potentially be reduced while still 
reproducing the method execution and preserve the coverage 
elements. The reduction can further reduce the waiting time for 
loading the tests, and the debugging efforts required from 
developers. Our binary reduction technique is inspired by the 
commonly used binary search technique. For each recorded 
method-level test, we divide its collection typed input variables 
into halves. Next, we take each half and other non-collection 
typed inputs and re-execute them with the suspicious method. 
We then check whether a half can preserve the originally 
covered coverage elements. If one of the halves does preserve 
all the coverage elements, we will continue dividing it into 
halves and check for the coverage elements repeatedly, until 
the minimal subset of the collection variables that can preserve 
the coverage elements are identified. Note that when 
preserving the coverage during reduction, we are preserving 
the exact covered elements of edge coverage, edge-pair 
coverage, and edge-set coverage.    

We implemented the initial working prototype of our 
framework in Java with around 800 lines of code to work with 
applications implemented in Java. Minor efforts are required 
from developers to instrument the suspicious method’s source 
code. After instrumentation, the recording process has been 
automated. The reduction approach requires developers to 
identify the large collection typed input variables. In the end, 
the reloading of the recorded and reduced method-level tests 
has been automated for debugging. The currently implemented 
coverage criteria are the edge, edge-pair, and edge-set 
coverage. The experiments we conducted to evaluate our 
framework will be shown in the next section.  

III. EXPERIMENTS 
 In this section, we discuss how we conducted our 
experiments and present the experiment results. In Section III-
A, we discuss how we selected datasets, applications, and 
methods to be used for our experiments. Section III-B presents 

the statistics of the recorded method-level tests. Section III-C 
presents the statistics of the reduced method-level tests. Section 
III-D presents how we used a mutation testing tool and the 
results of our mutation testing for both the recorded tests, and 
the reduced tests. And finally, Section III-E presents the 
performance analysis of our framework.  All the source code, 
generated graphs, recorded method-level tests, reduced 
method-level tests and mutation reports are openly available at 
https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNa
QOVfT9WGe4OUp_Pa?dl=0 for review. The machine we 
used for our experiment is a workstation with two Xeon E5-
2630V3 8 core CPUs @ 2.40GHz, 64GB DDR4 2133 MT/s 
memory, and a Samsung 850 EVO 500GB SSD.  

A. Subjects 
To evaluate our framework in everyday real-world 

challenging situations for debugging big data applications, we 
have the following criteria to follow when selecting our subject 
datasets, applications, and methods.  

• To produce experiment results that reflect real-world 
situations, our evaluation should be done with real-world 
datasets and applications. 

• To reflect situations where big data applications take a long 
time to execute, the execution time of the candidate 
datasets with corresponding candidate applications should 
be more than one hour.  

• To reflect situations where the significant methods are 
extensively executed, candidate methods should be 
executed for at least 100 times.  

• To reflect the higher complexity of big data applications’ 
and have a larger code sample to conduct coverage 
experiments on, candidate methods should have at least 30 
lines of code covered by the original system-level 
execution.  

• Total of at least five methods should be used for the 
experiments.  

TABLE I.  ALGORITHM EXECUTION TIME 

Algorithm Execution time for Phones_gyroscope 
Dataset 

Apriori N/A (Cannot handle Numeric Attributes) 

DecisionTable 9,559 seconds (2.66 Hours) 

EM Unable to finish within 24 hours 

HierarchicalClusterer OutOfMemoryError 

J48 6,357 seconds (1.77 Hours) 

LibSVM Unable to finish within 24 hours 

LinearRegression N/A (Cannot handle multi-valued nominal 
class) 

MakeDensityBasedClusterer 191 seconds 

RandomTree 577 seconds 

SimpleKMeans 301 seconds 

 

https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OUp_Pa?dl=0
https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OUp_Pa?dl=0


 Based on the above criteria, we first randomly selected ten 
algorithms’ implementations from the WEKA tool, a collection 
of machine learning algorithms for data mining tasks, which is 
used in real-world by many data analysts. Next, we selected 
one collection of dataset with the largest number of 
instances(Collected on 08/18/2018) from the UCI Machine 
Learning Repository that consists of 440 real-world collected 
datasets as a start. The selected collection of dataset 
Heterogeneity Activity Recognition contains four CSV files for 
four different types of devices with a total of 43,930,257 
instances and 16 attributes. The Heterogeneity Activity 
Recognition collection has the data type of multivariate and 
time-series and has the attribute type of real numbers. The 
dataset is applicable for both classification and clustering in 
default. Among the four CSV files, the largest CSV file 
Phones_gyroscope dataset of 1.38GB is used to be executed 
against the ten randomly selected algorithms to see how long 
the execution time is. The randomly selected ten algorithms 
and their execution time are shown in Table I. Note for 
HierarchicalClusterer implementation, we have tried to 
increase the Java heap space to 60GB using JVM argument “-
Xmx60g.” However, it still fails with “OutOfMemoryError” 
message.  

TABLE II.  SELECTED METHOD INFORMATION 

Method Algorithm 

# of 
Covered 
Lines of 

Code 

# of 
Total 
Lines 

of 
Code 

# of 
Execution 

Count  

buildClusterer EM 115 165 1,910 

cutPointsForSubset DecisionTable 62 64 29,564 

EM_Init EM 47 53 191 

handleNumericAttribute J48 51 53 28,314 

select_working_set LibSVM 50 52 417,989 

selectModel J48 50 58 12,391 

updateStatsForClassifier DecisionTable 46 66 557,305,280 

 

 As shown in Table I, both the DecisionTable and J48 
implementation executing the selected dataset meets the 
execution time requirement, and we were able to select a total 
of five methods within the implementation of these two 
algorithms using the selection criteria we previously 
mentioned. However, the input parameter type for one of the 
selected method getInstance from DecisionTable is of type 
“java.io.streamtokenizer,” which does not implement Java 
Serializable. Such types of variables will prevent us from 
recording its input without making further instrumentation that 
could potentially change the functionality of the method, which 
makes this method inapplicable to our experiments. For EM 
and LibSVM implementations, they do in fact meet the 
execution time requirement, but they are taking too long to 
execute the Phones_gyroscope dataset for experimentation 
purpose due to our limited resources and time. We reduced the 
size of the Phones_gyroscope dataset by dividing the dataset in 
half and continue to divide in half until the execution time for 

EM and LibSVM are reduced to be near an hour. The reduced 
Phones_gyroscope dataset for EM and LibSVM now has the 
size of 3.3 MB. EM will now take 5352 seconds (1.49 Hours) 
to execute and 4491 seconds (1.25 Hours) for LibSVM.  

 After two datasets (original Phone_gyroscope dataset and 
the reduced dataset) and four algorithms’ implementations 
(DecisionTable, EM, J48, LibSVM) have been selected, we 
used EclEmma [26], a Java code coverage tool for Eclipse, to 
identify the methods with more than 30 lines of code(without 
comments and spaces) covered by the original system-level 
execution. A total of seven methods are selected based on the 
selection criteria we discussed previously. The selected 
methods and their information are shown in Table II. These 
methods are then instrumented as previously described in 
Section II. 

B. Recorded Method-Level Tests 
For our experiments, we have recorded method-level tests 

for all of the seven selected methods for preserving edge 
coverage, edge-pair coverage, and edge-set coverage of the 
original system-level execution. Some important information 
about the recorded method-level tests is shown Table III. Note 
that the code coverage column in Table III is for all three 
types of recorded tests, as well as the original failing system-
level execution. This is because once all edges are preserved, 
all the code coverage will be preserved as well, and edge-pair 
coverage and edge-set coverage both subsume edge coverage.   

Based on the results shown in Table III, we can see that 
only a small number of method-level tests is sufficient for 
preserving coverage for a suspicious method. When failures 
occur on a system level, recording method-level tests for the 
suspicious methods using our framework could potentially 
save developers a lot of time and efforts. The actual fault 
detection ability of our recorded method-level tests will be 
further evaluated using mutation testing in Section III-D.  

C. Reduced Method-Level Tests 
 As shown in Table IV, while some of the tests have a 
reasonable size, three of the methods, cutPointsForSubset,  
selectModel and updateStatsForClassifier have significantly 
large inputs for their recorded method-level tests. While 
debugging with these tests is easier than debugging with 
dataset on a system level, loading and debugging these tests 
could still take some time. We will further reduce the size of 
these tests using our binary reduction approach that was 
discussed in Section II.  In Table V, we compare the 
differences between the recorded method-level tests before and 
after they were reduced. 

 For size reduction, our binary reduction technique was able 
to reduce the input size of tests for five out of seven methods. 
Our result shows that the reduction amount is often above 95%. 
Most of the method-level tests can be reduced significantly 
while still preserving our selected coverage elements. While 
one of the tests for selectModel can be reduced to 1.7 KB 
from1.63 GB, some tests still have a fair amount of input data 
remaining, such as the reduction from 1.63GB to 37.22 MB for 
one of the tests of cutPointsForSubset. Furthermore, we 
wereunable to reduce any test inputs for two methods, 



TABLE III.  RECORDED METHOD EXECUTION INFORMATION 

TABLE IV.  TEST REDUCTION RESULT 

Method Combined 
# of Tests 

# of 
Reducible 
Collection 
Variables 

Average  
Input Size (MB) 

Total  
Input Size (MB) 

Maximum  
Input Size (MB) 

Minimum  
Input Size (MB) 

Test Execution 
Time (Seconds)  

Recorded Reduced Recorded Reduced Recorded Reduced Recorded Reduced Recorded Reduced 

buildClusterer 4 1 3.18 3.18  12.75  12.75  3.23  3.23  3.16  3.16  5 s 5 s 

cutPointsForSubset 18 2 1628.16  9.77  29306.81  176.25  1628.16  37.22  1628.16  0.001  1836 s 5 s 

EM_Init 3 1 4.71  4.71  14.12  14.12  4.34  4.34  5.18  5.18  5 s 5 s 

handleNumericAttribute 33 1 54.00  0.74  1781.76   24.42  1300.48  1.75  0.0012  0.001  155 s 2 s 

select_working_set 63 2 39.50  0.08  2488.32  5.04  41.9  0.29  1.83  0.002  176 s 1 s 

selectModel 6 2 1392.64  0.02  8357.04  0.11  1628.16  0.01  1320.96  0.001  682 s 1 s 

updateStatsForClassifier 11 1 1269.76  12.53  13967.34  138.06  1269.76  44.86  1269.76  0.51  875 s 3 s 

 

buildClusterer and EM_Init. We further investigated this by 
looking into how the collection typed input variables are 
accessed and used. We noticed mainly three different 
scenarios that may have contributed to our results.  

The first scenario is when a collection variable is partially 
used as inputs. When the partially accessed instances are in a 
consecutive sequence in the collection variable, or when only 
one instance is accessed, our binary reduction technique will 
reduce such collection variable to its minimal subset. 
However, if the accessed instances are spread across the 
collection variable, our binary reduction will not be able to 
identify only the accessed instances. Hence, the reduction may 
not be minimal, many unnecessary data based on the coverage 
elements may remain.  

The second scenario is when the collection variable is 
accessed in branching statements, e.g. for the tests recorded 
for buildClusterer and EM_Init. The collection variables 
identified for these two methods were used at a few, branching 
statements and passed to other methods that return value to the 
execution as well. In this situation, maintaining the exact 
coverage elements can be difficult to achieve for our binary 
reduction technique.  

The third scenario is when the collection variable is not 
accessed at all. In our implementation, to reproduce method 
executions precisely, we record both the parameters passed to 

the method and the object where the method was invoked 
from, ensuring all possible inputs are recorded. However, not 
all recorded information is used as inputs, such as for some 
instance variables of the object where the method was invoked 
from. In this situation, our binary reduction technique may be 
able to reduce un-accessed collection variables to empty, 
while still preserving the coverage elements.  

The first and second scenario can potentially use delta 
debugging [14] or preserving superset of the coverage 
elements to further the reduction. However, delta debugging 
could significantly increase the reduction overhead, and 
preserving superset of the coverage elements may lose or 
introduce some coverage elements that could potentially have 
large impact on the reduced method-level test. For the third 
scenario, we can implement systematic static analysis in the 
future to help our framework identify and record only the 
necessary inputs for reproducing method executions. 

For time reduction, many of the recorded set of method-
level tests are now taking seconds instead of minutes after the 
binary reduction. The loading time of these tests is 
significantly reduced. When debugging with these reduced 
tests, not only the tests will be short and easier to debug, the 
waiting time is also easy to manage.   

 

Method 
# of Tests 
for Edge 
Coverage 

# of 
Covered 

Edges 

# of Tests 
for Edge-

Pair 
Coverage 

# of 
Covered 

Edge-
Pairs 

# of Tests 
for Edge-

Set 
Coverage 

# of 
Combined 
Recorded 

Tests 

# of Original 
Execution 

Count  

Code 
Coverage 

Total # of 
Lines of 

Code 

buildClusterer 3 83 4 181 3 4 1,910 69.70% 165 

cutPointsForSubset 8 30 9 64 17 18 29,564 96.88% 64 

EM_Init 1 24 3 55 1 3 191 88.68% 53 

handleNumericAttribute 4 32 5 70 33 33 28,314 96.23% 53 

select_working_set 7 41 11 111 61 63 417,989 96.15% 52 

selectModel 5 35 5 74 6 6 12,391 86.21% 58 

updateStatsForClassifier 3 26 5 59 9 11 557,305,280 69.70% 66 



TABLE V.  MUTATION TESTING RESULT 

Method 

Edge Coverage 
Mutant Killing Rate 

Edge-pair Coverage 
Mutant Killing Rate 

Edge-set Coverage 
Mutant Killing Rate 

Combined 
Recorded Tests 
Mutant Killing 

Rate 

# of 
Mutants 

Generated 
for 

Covered 
Code 

Code 
Coverage 

Total 
# of 

Lines 
of 

Code Recorded Reduced Recorded Reduced Recorded Reduced Recorded Reduced 

buildClusterer 79.18% 79.18% 79.18% 79.18% 79.18% 79.18% 79.18% 79.18% 269 69.70% 165 

cutPointsForSubset 81.71% 81.1% 81.71% 82.32% 85.98% 85.98% 85.98% 85.98% 164 96.88% 64 

EM_Init 87.25% 87.25% 87.25% 87.25% 87.25% 87.25% 87.25% 87.25% 102 88.68% 53 

handleNumericAttribute 89.29% 88.57% 90.71% 90.71% 91.43% 91.43% 91.43% 91.43% 140 96.23% 53 

select_working_set 71.88% 75% 73.44% 75% 75% 78.91% 75% 78.91% 128 96.15% 52 

selectModel 57.58% 57.58% 57.58% 57.58% 62.88% 62.88% 62.88% 62.88% 132 86.21% 58 

updateStatsForClassifier 86.07% 81.15% 86.07% 84.43% 86.89% 86.07% 86.89% 86.89% 122 69.70% 66 

Average 79.00% 78.55% 79.42% 79.49% 81.23% 81.67% 81.23% 81.79%      

D. Mutation Testing 
For mutation testing, we used PITest (PIT) [24], a 

mutation testing system for Java, to evaluate the fault 
detection effectiveness of our recorded method-level tests. In 
PIT, different types of faults (or mutants) are automatically 
seeded into the source code. Each mutation (A mutated 
version of source code) contains only one fault and is executed 
against the unit tests that developers provide.   

Mutation testing requires the provided unit tests to be 
passing tests. This because only when the mutant’s output 
differs from the expected output, a mutant is said to be killed. 
In our experiments, when a method-level test is executed, we 
record the outputs as the expected output for mutation testing 
purpose. The output for each test contains not only the 
returned object if there is one, but also the object where the 
method was invoked from and the input parameters of the 
method. This is because the values of these parameters and the 
object where the method was invoked from could change as 
well and should be considered as part of the output. PIT 
provides a total of 25 different mutators to mutate different 
type of code. When conducting mutation testing, we have 
enabled all 25 mutators in PIT for generating mutants in our 
selected methods. PIT also provide an option to set a timeout 
factor for executing each test against each mutant; the default 
is 1.25 times the original test execution time. We increased the 
timeout factor to 10 times the original execution time, to avoid 
false positives killing of mutants. This is because a timed-out 
mutant is also considered as a killed mutant. We have also 
increased the Java heap size to 60GB and stack size to 128MB 
using JVM configuration in PIT, to avoid false positive killing 
of memory error mutants.  

Table V shows the mutation testing result of our recorded 
and reduced method-level tests. Please note that PIT currently 
does not support the mutant generation of only covered 
statements. If a mutant is located at a statement that was not 
covered by the test, the mutant will not be exercised, hence 
will not be killed. Such mutants will not be considered in our 

experiments. This is because if a mutant is not exercised by 
our recorded tests, it is also not exercised by the original 
system-level execution.  The total number of mutants 
generated for each selected method in Table V are calculated 
manually which consist of only exercised mutants by our tests.  

For recorded method-level tests without reduction shown 
in Table V, we can see that most of the recorded tests for 
different methods and coverage criteria have a high mutant 
killing rate. Even without comparing to the original system-
level execution, with a small number of tests, the tests show 
high effectiveness in detecting potential faults that could occur 
in the selected methods. Five out of seven selected methods 
have tests with over 80% of mutant killing rate. The average 
mutant killing rate across seven methods are around 80% for 
all four different sets of tests that achieves edge coverage, 
edge-pair coverage, edge-set coverage, and these three 
combined. This indicates the method-level tests generated 
using our framework can effectively help developers to debug 
and find faults they are looking for, while significantly 
reducing the time and efforts required from developers for 
debugging.  

For reduced method-level tests, their mutant killing rates 
are nearly the same as their original recorded tests. With 
differences no larger than 5% of their original killing rate. We 
even see some cases with increased mutant killing rate, such 
as for the edge-pair coverage of method 
“cutPointsForSubset”. This is likely due to some coverage 
elements other than our selected coverage criteria were 
introduced to the reduction of the method-level tests. The 
mutation testing results of the reduce tests show that even after 
a significant amount of inputs are reduced, if the coverage 
elements are preserved, the fault detecting effectiveness of the 
original method-level tests can still be preserved. Our binary 
reduction technique on method-level tests can further help 
developers to reduce efforts for debugging while maintaining 
the debugging effectiveness of the method-level tests.  

 



TABLE VI.  SYSTEM-LEVEL MUTATION TESTING 

Method Algorithm 

# of Mutants 
Killed by 

System-Level 
Execution 

# of 
Propagatable 

Mutants Killed 
by Combined 
Method-Level 

Tests 
select_working_set LibSVM 58 51 

selectModel J48 61 56 

 
We also investigated the two methods select_working_set 

and selectModel with the lowest mutant killing rate by 
comparing their results to the mutation testing results of their 
system-level execution. We have planned on comparing all 
recorded method-level tests’ mutation testing results with their 
corresponding system-level execution. However, while 
mutation testing is a very effective method to evaluate the 
quality of tests, mutation testing is a rather expensive method 
to use. In this paper, we only have two system-level mutation 
testing results for select_working_set and selectModel. 
Moreover, their system-level mutation tests both took over 
one week to complete. Note that some mutants that can be 
killed with method-level tests are not propagatable on the 
system level. We considered the option of recording all 
method executions of a method during its system-level 
execution. However, it is impractical, because of our selected 
methods have been executed with a large number of times, 
and many of them have large inputs as well. For comparing 
mutation testing results between method-level tests and 
system-level execution, we will only be considering the 
propagatable mutants for the method-level tests.  

The system-level mutation testing results for 
select_working_set and selectModel are shown in Table VI. 
For LibSVM, the system-level execution was able to kill 58 
mutants, the combined method-level test of 
select_working_set was able to kill 51 out 58 propagatable 
mutants with a propagatable mutant killing rate of 87.93%. 
For J48, the system-level execution was able to kill 61 
mutants, the combined method-level tests of selectModel were 
able to kill 56 out of 61 propagatable mutants with a 
propagatable mutant killing rate of 91.80%. The further 
investigation shows the reason why method-level tests 
recorded for select_working_set and selectModel have a lower 
mutant killing rate. It is likely because of their original 
system-level execution has a lower mutant killing rate.  

Furthermore, after investigating the un-killed propagatable 
mutants in the recorded method-level tests, three un-killed 
propagatable mutants from select_working_set and one from 
selectModel were mutations related to modifying boundary 
conditions. Which means by adding more method-level tests 
that cover boundary conditions, the higher mutant killing rate 
can be achieved for the method-level test. With a few basic 
coverage criteria implemented for our framework, method-
level tests produced by our framework can be very effective in 
detecting faults during debugging.  

E. Performance Evaluation 
We evaluate the performance of our implementation by 

investigating the original system-level execution time, the 
time taken to evaluate and record the method-level tests, time 
taken to reduce tests, and the time taken to execute the 
recorded method-level tests. The results are shown in Table 
VII. Recall that in the experiments for mutation testing, both 
inputs and outputs of the selected method executions are 
recorded. However, the results shown in Table VII are only 
for recording the inputs and executing the recorded method-
level tests with only inputs without comparing their outputs. 
This is because in real-world use of our framework, outputs of 
the method executions do not need to be recorded.  

As previously mentioned in Section II, we have two 
solutions for recording selected method executions. One 
method is to serialize and temporarily store the inputs for each 
method execution and record the inputs locally when a method 
execution is determined to be significant. This method will 
only require executing the entire system once. However, in 
cases where a method has large inputs or is executed for a 
large number of times, this method may have a significant 
performance issue due to all the unnecessary serialization. The 
second solution was to execute the entire system twice. In the 
first execution, we evaluate each method execution and store 
the execution IDs of the to be recorded method executions. In 
the second execution, we only serialize and record the inputs 
of the selected method executions based on their execution 
IDs. The numbers marked with “*” indicates that the method-
level tests were recorded using the second recording method. 
In Table VII.  

TABLE VII.  PERFORMANCE EVALUATION 

Method 
Original 

Execution 
Time 

Combined 
Test 

Recording 
Time 

Combined Test 
Execution Time  

Combined 
Test 

Reduction 
Time Recorded Reduced 

buildClusterer 5352 s 6303 s 5 s 5 s 27 s 

cutPointsForSubset 9559 s *21615 s 1836 s 5 s 7558 s 

EM_Init 5356 s 5361 s 5 s 5 s 22 s 

handleNumericAttribute 6357 s *14624 s 155 s 2 s 1965 s 

select_working_set 4491 s *11531 s 176 s 1 s 2763 s 

selectModel 6357 s *14212 s 682 s 1 s 3122 s 

updateStatsForClassifier 9559 s *30513 s 875 s 3 s 4088 s 

 
In Table VII, we see that recording method-level tests 

using our framework can take up to three times of the initial 
system execution. Additional test reduction time could take as 
much as two hours based on the size of the inputs (Our binary 
reduction utilizes sterilization for deep copy as well). We 
believe the time is manageable for developers. This is because 
without our framework, developers could spend more time to 
debug their big data application. Moreover, our approach is 
automated, allowing developers to work on other tasks while 
running our approach. For executing the recorded method-
level tests, we see that it usually takes much less time than 



executing the entire system, especially for the reduced tests, 
the execution time can range from as little as one second to 
five seconds. Overall, we believe that recording and reducing 
method-level tests using our framework will help developers 
save a lot of time and efforts in debugging big data 
applications.  

IV. RELATED WORK 
We first review previous work related to generating tests 

for big data applications. Csallner et al. proposed an approach 
that uses dynamic symbolic execution to automatically 
generate tests to test general MapReduce programs [5]. Morán 
et al. proposed MRFlow, a testing technique tailored to test 
MapReduce programs [11]. Morán et al. also proposed a 
technique to generate different infrastructure configurations 
for a given MapReduce application that can be used to reveal 
functional faults [10]. They also proposed an automatic test 
framework that can detect functional faults automatically [9]. 
Li et al. proposed a tool to generate test input data using input 
doing model information for testing BigData applications [8]. 
Previous work reported in [5, 9, 10, 11] focuses on generating 
tests that help to identify functional faults, i.e., faults that will 
cause the program to generate expected output for some 
configurations and invalid output for other configurations. In 
contrast, when a failure occurs for big data application, our 
work focuses recording existing method executions that 
preserves coverage as tests to facilitate the debugging of 
certain suspicious methods searching for the fault(s) that may 
have caused the failure observed at the system level.  

Next, we review work related to debugging big data 
applications. Gulzar et al. proposed a tool BigDebug that 
simulates breakpoints to enable a developer to inspect a 
program without actually pausing the entire computation [13]. 
To help a user inspect millions of records passing through a 
data-parallel pipeline, BigDebug provides guarded 
watchpoints, which dynamically retrieve only those records 
that match a user-defined guard predicate. Li et al. proposed a 
technique that uses different annotators to debug the tracking 
data independently and their debugging results were collected 
for joint correction propagation for later analysis [15]. Our 
work is similar to Gulzar [13] and Li [15] regarding the 
debugging of big data applications without re-executing the 
potentially time-consuming original system-level execution. In 
contrast, our work focuses on recording significant method-
level executions to be replayed for debugging instead of 
recording part of the system-level inputs [13] and log 
information [15].  

 Next, we review work related to recording program 
information and using them in unit test generation. Pasternak 
et al. proposed a technique that records interactions occurring 
during the execution of Java programs and used that 
information to construct unit tests automatically using 
GenUTest [16]. Orso et al. proposed a technique and 
conducted a feasibility study using SCARPE, a prototype tool, 
for selective capture and replay of program executions [12]. 
Similar to work presented in this paper, Orso’s technique [12] 
can be used to automatically generate unit tests based on the 

recorded information. Our work is similar to Pasternak [16] 
and Orso [12] regarding recording the method-level tests 
based on the system-level execution. In contrast, our work 
does not require complex instrumentation techniques on the 
target’s bytecode [12], the instrumentation used in our 
implementation is simple and relies on certain code coverage 
criterion. And our implementation will work on any method, 
as long as their input variables implement Java Serializable, 
where GenUTest partially works on some inner classes and 
anonymous classes.  

Next, we review work related to reducing input size for 
debugging purpose. Zeller et al. proposed a technique to 
isolate failure-inducing inputs on the system level to reduce 
work required for debugging using Delta Debugging [14]. 
Clause [22] et al. presented a technique based on dynamic 
tainting for automatically identifying subsets of a program’s 
inputs that are relevant to a failure. Our work is similar to 
Zeller [14] and Clause [22] regarding reducing inputs based 
on certain aspects of the execution for debugging purpose. In 
contrast, we preserve coverage elements instead of failure, and 
using binary reduction for the dividing, which can have better 
performance than Delta Debugging and dynamic tainting.  

V. CONCLUSION & FUTURE WORK 
      In this paper, we presented an approach to provide 
developers with concrete method-level tests that were 
recorded from the system-level input dataset and selected 
using edge, edge-pair, and edge-set coverage. Binary 
reduction is available for reducing method-level tests with 
large input. The set of method-level tests that are provided by 
our approach will help developers to effectively debug 
suspicious methods against properties of the original input 
dataset, and significantly reduce time required for debugging 
big data applications by avoiding the executions of other non-
important methods while maintaining a high probability that 
the recorded tests will trigger failure(s) caused by the fault(s).  
      For future work, our approach will involve developing 
techniques for automatic code static analysis that provides 
information for instrumenting the source code. Moreover, 
automatic code instrumentation for inserting code to record 
related coverage elements. We will also focus on designing 
more detailed experiments with more real-world big data 
applications, datasets, and coverage criteria to more precisely 
analyze the effectiveness of our approach.  
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