

A Method Level Test Generation Framework for
Debugging Big Data Applications

Huadong Feng
Department of Computer Science &

Engineering
The University of Texas at Arlington

Arlington, USA
huadong.feng@mavs.uta.edu

Jaganmohan Chandrasekaran
Department of Computer Science &

Engineering
The University of Texas at Arlington

Arlington, USA
jaganmohan.chandrasekaran@mavs.uta.edu

Yu Lei
Department of Computer Science &

Engineering
The University of Texas at Arlington

Arlington, USA
ylei@cse.uta.edu

Raghu Kacker
Information Technology Lab

National Institute of Standards
and Technology

Gaithersburg, USA
raghu.kacker@nist.gov

D. Richard Kuhn
Information Technology Lab

National Institute of Standards
and Technology

Gaithersburg, USA
d.khun@nist.gov

Abstract—When a failure occurs in a big data application,
debugging with the original dataset can be difficult due to the
large amount of data being processed. This paper introduces a
framework for effectively generating method-level tests to
facilitate debugging of big data applications. This is achieved by
running a big data application with the original dataset and by
recording the inputs to a small number of method executions,
which we refer to as method-level tests, that preserves certain
code coverage, e.g., edge coverage. The inputs of these method-
level tests are further reduced if needed, while maintaining code
coverage. When debugging, a developer could inspect the
execution of these method-level tests, instead of the entire
program execution with the original dataset, which could be
time-consuming. We implemented the framework and applied
the framework to seven algorithms in the WEKA tool. The initial
results show that a small number of method-level tests are
sufficient to preserve code coverage. Furthermore, these tests
could kill between 57.58% to 91.43% of the mutants generated
using a mutation testing tool. This suggests that the framework
could significantly reduce the efforts required for debugging big
data applications.

Keywords—Testing; Unit Testing; Big Data Application
Testing; Test Generation; Test Reduction; Debugging; Mutation
Testing;

I. INTRODUCTION
Big data applications are software programs that process

massive amounts of data. Debugging big data applications can
be more complicated and time-consuming. For programs with
much smaller inputs, they often take a lot less time to execute
comparing to big data applications. When a failure occurs
while executing a program with their original dataset, programs
with smaller dataset are often easier to debug by using the
system-level inputs as tests; developers can debug the
suspicious methods one execution at a time. However, it can be
challenging for big data applications, because of the long

execution time, a large number of method executions, and/or a
large number of different variables to be inspected in the
method. For example, a classification algorithm DecisionTable
that is implemented in the WEKA tool [20], takes over two
hours to execute the Heterogeneity Activity Recognition
Dataset from the UC Irvine (UCI) Machine Learning
Repository[21]. One of the DecisionTable’s methods,
updateStatsForClassifier with 66 lines of code (not including
comments and spaces) were executed over half a billion times.
Furthermore, each execution was passed with a unique
combination of values of its input variables. If a failure
occurred during real-world usage of such systems and
developers need to investigate such methods, debugging the
system with the failing system-level input can be very
expensive to accomplish.

Some approaches have been proposed to reduce the effort
required for testing and debugging big data applications at the
system level [5, 8, 9, 10, 11]. For example, data mining and
machine learning techniques are used to reduce the size of the
real dataset or generate synthetic datasets [9, 10] for the testing
purpose. However, when debugging on the system level with
the real dataset, such methods are less likely to provide
assistance for reducing the dataset. Debugging approaches such
as delta debugging [14] can identify the minimum failure-
inducing inputs at the system level, which can reduce the size
of the inputs while preserving the failure that the real dataset
triggered. However, delta debugging can be very expensive in
practice. This is because it requires the input data be
recursively split into smaller chunks, and individual and
combinations of chunks need to be repeatedly executed at the
system level until a minimal failure-inducing input is
identified. For big data applications, due to their input size and
execution time, delta debugging may have to execute almost
exhaustively with a very large number of different
combinations of inputs on the system level, which can be
impractical to use. In such situations, developers would likely

have to randomly debug some method executions or just by
guessing to investigate the suspicious methods. Providing
developers a small set of simpler method executions that would
likely be sufficient to trigger the fault they are looking for
would give developers a big head start on the debugging, and
could potentially save developers a lot of time and efforts.

Our approach consists of mainly two steps, generating
method-level tests from a failed system-level execution while
preserving a given code coverage, e.g., edge coverage [19], and
reducing the size of the method-level tests using our binary
reduction technique. The main idea is to evaluate each method
execution based on specific coverage criteria, such as statement
coverage, edge, node and different types of path coverage
based on Control Flow Graph (CFG) [19], note that other
coverage criteria, e.g., prime-path coverage[19], could also be
used in our approach. We record the method executions as
method-level tests when they cover any new coverage elements
with respect to the chosen coverage criterion. So only the
necessary method executions concerning the selected criterion
will be executed later for debugging purposes instead of the
entire system. Furthermore, we reduce the inputs of method-
level tests with large collection typed variables using a binary
reduction technique that is inspired by binary search, to select
the minimal inputs that still preserve the coverage criterion
covered by the originally recorded method-level tests. Based
on the coverage criterion we choose, a much smaller set of
method-level tests can effectively detect the fault that may
have caused the failure observed at the system level.

Consider the updateStatsForClassifier method in the
DecisionTable implementation. Recall that it consists of 66
lines of code. When the DecisionTable implementation was
executed with the Heterogeneity Activity Recognition Dataset
from the UC Irvine (UCI) Machine Learning Repository[21],
the method was executed for 557,305,280 times. However,
recording only three, five and nine method-level tests was
sufficient to achieve the same edge, edge pair and edge set
coverage as the original 557,305,280 method executions, with
a mutant killing rate ranging from 86.07% to 86.89%. The
edge, edge-pair, and edge-set coverage are defined in Section
II-A. Mutation testing is defined in Section III-D. The
framework we implemented will analyze and record necessary
method executions at runtime with a relatively small overhead
depending on the number of the method executions, and the
size of the method-level inputs to be serialized. Our framework
will significantly reduce the number of method executions that
developers have to manually inspect while maintaining a high
probability that the recorded method-level tests can detect
potential fault(s) in the suspicious methods.

In our experiments, we selected seven methods from four
machine learning algorithms that were implemented in WEKA
using Java. The four machine learning algorithms from WEKA
and two datasets from UCI dataset repository were selected
based on the execution time and size of datasets. Method-level
tests were recorded for these seven methods based on the edge
coverage, edge-pair coverage, and edge set coverage. On
average, 4.4 tests were recorded for edge coverage, 5.9 tests for
edge-pair coverage, and 18.6 tests for edge-set coverage. While
initially, the seven methods were executed from 191 to half a
billion times. For some of the recorded method-level tests with

large inputs, such as the previously mentioned
updateStatsForClassifier method from the DecisionTable
implementation. We further reduce the size of these large
inputs using a binary reduction technique to select their
minimal subset that preserves the same coverage elements the
original recorded method-level test covers. The average input
size for updateStatsForClassifier is reduce to 12.53 MB from
1269.76 GB. The efforts and time required from developers are
further reduced using our binary reduction technique.

Moreover, the test effectiveness was evaluated using PITest
(PIT) [24], a commonly used mutation testing tool. All 25
available mutant generators were enabled for mutant
generation. When combining tests generated for the edge,
edge-pair, and edge-set coverage, the mutant killing rate is
ranging from 57.58% to 91.43%. The two methods
select_working_set and selectModel with lowest mutant killing
rate of 78.91% and 62.88% for their edge-set coverage tests are
further investigated by comparing the mutation testing result
differences between these two methods, and their original
system-level execution.

We summarize the contribution of the paper as follows:

• We present a new framework to debug big data applications
using method-level tests efficiently. When a failure occurs on
the system level for big data applications, by utilizing different
test effectiveness measurements, our framework can generate a
small number of tests that are effective in detecting faults for
debugging.

• We present a binary reduction technique that can effectively
reduce the size of method-level tests and preserve the selected
coverage elements, which further reduces the efforts and time
required from developers for debugging.

• We implemented our framework and conducted experiments
on seven methods from four different machine learning
algorithms’ implementations. The implementation currently
requires manual code analysis and instrumentation of a few
lines of code to record method-level tests. The code analysis
and instrumentation can be later fully automated. Executing the
recorded method-level tests have been fully automated.

The rest of the paper is organized as follows. Section II
presents the details of our approach and implementation. The
experimentation design and results are summarized in Section
III. Section IV reviews the related works, and finally, Section
V concludes this paper and our future work.

II. APPROACH
 Our approach consists of two major steps, recording
method-level tests and reducing the size of the recorded tests.
In this section, Section II-A presents our approach to recording
method-level tests based on a given coverage criterion. Section
II-B presents our approach to reducing the size the recorded
tests.

A. Record Test
Once a failure occurs, a developer typically identifies

several suspicious locations based on his or her understanding
about the program. Next, the developer could set up

breakpoints in these locations and then start the debugging
process with the system-level inputs. The breakpoints allow the
developer to inspect the program state during the debugging
process. This approach may not be effective for big data
applications. This is because when the dataset is large, a
breakpoint may be executed for a large number of times before
an incorrect program state is found, and each breakpoint has to
be inspected manually.

In our approach, the developer first identifies suspicious
methods, in a way that is similar to the identification of
suspicious locations. Next, our approach runs the program with
the original dataset and records, for each suspicious method, a
small number of method executions, which we refer to as
method-level tests, based on a specific coverage criterion. The
method-level tests recorded for a given method achieve the
same coverage criterion as the original dataset for the method.
The developer can then debug each method with the recorded
method executions, instead of a potentially large number of
method executions. Since the same coverage criterion is
satisfied, there is a high probability that debugging these
recorded method-level tests would allow us to detect the fault
that may have caused the failure observed at the system level.

Fig. 1. Recording Process at Runtime

After the developer identifies a list of suspicious methods
to be recorded, we instrument these methods to capture the
coverage elements that need to be covered for the selected
coverage criterion. After instrumentation, our recording
process at runtime is shown in Figure 1. While re-executing the
failing system-level execution, each method execution of the
suspicious methods is evaluated to determine whether it is
significant based on the selected coverage criterion. A method
execution is considered to be significant if it covers at least one
new coverage element. When a method execution is deemed to
be significant, its corresponding input for reproducing the
method execution is recorded as a method-level test.
Otherwise, the execution will continue until it reaches the next
significant method execution.

 In this paper, we will use edge coverage [19], edge-pair
coverage [19], and edge-set coverage, as the coverage criteria
based on Control Flow Graph (CFG) to determine if a given
method execution is significant. A CFG is a representation,
using graph notation, of all paths that might be traversed
through a program during its execution, captures information
about how the control is transferred in a program. In a CFG,
each node in the graph represents a basic block, i.e. a sequence
of consecutive statements with a single entry and a single exit
point[19]. Such as shown in Figure 2. A directed edge[19]
represents the control flow from one node to another. And a

path[19] is a sequence of nodes, where each pair of adjacent
nodes is an edge. Note that when edge-set coverage is used, a
method execution is considered significant if it covers a unique
set of edges, i.e., no other method executions exactly cover the
same set of edges. Also note that other coverage criteria, e.g.,
prime-path coverage [19], could also be used in our approach.

Fig. 2. Example of Control Flow Graph

To record method-level tests, three major tasks need to be
accomplished, including instrumentation, method execution
evaluation, and serialization. We further discuss the
implementation of these tasks in the following subsections.

1) Instrumentation
We first analyze the source code based on the selected

coverage criteria using Control Flow Graph (CFG). Instead of
manually drawing CFG for each suspicious method, we used a
tool called Atlas [23], which is an Eclipse plugin tool
developed by EnSoft Corp. Atlas can automatically generate
CFGs based on the source code of a selected method. The
CFGs generated by Atlas uses each line of code as a basic
block. This is different from the classical definition [19] that a
basic block consists of a sequence of consecutive statements
with a single entry and a single exit point. As an example, a
simple method and its CFG generated using Atlas is shown in
Figure 3. We modify the generated CFGs from Atlas by
combining blocks that are in a consecutive sequence without
inner branches. Doing so reduces the amount of
instrumentation and thus the runtime overhead when executing
the instrumented code. The red rectangle in Figure 3 marks the
lines of code combined to be a basic block as we previously
defined.

Fig. 3. Example of Modifying Generated Control Flow Graph

Once we have the CFGs that represents the suspicious
methods, we will instrument these methods by adding a few
lines of code that invokes our recording program. Figure 4
shows an example of how our implementation instruments a
sample method. The highlighted statements are extra code
added by instrumentation. The code from line 3 to line 10
initializes the recording process. They are inserted at the
beginning of the suspicious methods. The ParaArray contains
the list of input parameters used for a method execution. The
ParaTypeArray contains the object types of the input
parameters, which are needed to reload the recorded inputs
using Java Reflection. When recording a method execution, we
record not only the input parameters, but also the object where
the suspicious method was invoked from, to store the instance
variables accessed during the execution as well. They are
loaded into our system using the “R.loadInputs(ParaArray,
this);” statement. The statement “R.enterBlock(#number);” is
added before each basic block to record the index of the basic
block when it is executed. Moreover, the statement
“R.endOfProcess();” is added before each return statement or
at the end of a method to notify our program a method
execution is completed, and start the method execution
evaluation process.

Fig. 4. Example of Instrumentation

 Recording basic block indexes with multiple entrances at
runtime requires different instrumentation as we previously
described. As the example shown in Figure 4, lines 25 to 26
and lines 30 to 31 are the extra codes added for recording the
basic block contains line 24. To record the basic block indexes
correctly for basic blocks with multiple entrances such as for
while loop, for loop, else if, and switch statements, etc., we are
inserting the “R.enterBlock(#number);” statement before its
descendants’ “R.enterBlock(#number);” statement based on the
CFG to capture every exercise of such blocks.

2) Method Execution Evaluation
In our program, we temporarily store the covered edges,

edge-pairs, and edge-set for each method execution. We
consider a method execution to be significant, and thus record
the execution as a method-level test if it covers any edges,
edge-pairs or edge-set that have not been covered before. Note
that we check for uncovered edges first for each method
execution. This is because if a method execution covers any
edges that have not been covered before, it must cover some
new edge-pair(s) and a new edge-set. The time complexity for
evaluating each method executions is O(n2) where n represents
the number of coverage elements each method execution has to
evaluate. For each method execution, each coverage element of
the method execution will be compared to the list of the
previously covered elements. If a method execution covers any
new coverage element, the method execution will be recorded,
and the newly covered elements will be added to the list.

3) Serialization
Once a method execution is determined to be significant,

we will record the inputs of the method execution using
serialization. Serialization is generally an expensive process,
especially for the built-in serialization method that Java
provides. There are other tools [27] developed by third-parties
for serializing Java objects at a much faster speed such as
serializing Java objects into JSON, XML files. However,
many of these alternative serialization methods have some
limitations. For example, some serialization methods [27] do
not work when objects contain circular references or there is
no constructor. Java default serialization does guarantee that if
a class implements Serializable, its objects can be correctly
serialized and deserialized. We used a tool called FST [25]
that can be ten times faster [25]. In our experiments, FST
performed significantly faster than Java built-in serialization.
Furthermore, FST is the only alternative tool that can correctly
serialize and deserialize all the objects in the subject programs
used in our experiments.
 After using FST to improve the performance of our test
recording, there is still a situation where we experience
significant overhead. To ensure an exact copy of the inputs is
created, we perform deep copy on objects by serializing and
deserializing the object. Most of the stored inputs will not end
up become recorded after the evaluation of method executions.
Much of the time spent to store deep copied objects are
unnecessary. And these unnecessary time can be huge when a
method takes large inputs, and/or been executed for a large
number of times. We store and perform deep copy on inputs is
because the value of an input object could potentially change
during a method execution, especially for void methods that
operate on instance variables, we need to store the inputs of the
method execution before the execution starts. For
buildClusterer and EM_Init, this recording approach took less
than 18% overhead to the original system-level execution, and
the recording can be completed by executing the entire
program once. However, the overhead can be as high as 7 to 30
times the original system-level execution time for recording
tests of the other five selected methods. In such cases, our
solution is recording the method-level tests by executing the
entire system twice. In the first execution, we will not store any
inputs. Instead, we only record the ID of a significant method

execution. In the second execution, we only serialize the
selected method executions to store their inputs as method-
level tests. Doing so can significantly reduce the runtime
overhead in cases where a method takes large inputs or is being
executed for a large number of times. In our experiments, the
overhead was reduced to near in average 2.5 times the original
system-level execution from 7 to 30 times for five of our
selected methods.

B. Test Reduction
While the recorded method-level tests can be used for

debugging, these tests in some case consist of very large
inputs. For example, for three (selectModel,
updateStatsForClassifier, cutPointsForSubset) of the selected
methods during our experiments, we recorded a total of 35
method-level tests. Their inputs have the average size of
1.45GB, and total over 50GB. Executing these tests can take a
lot of time. And breakpoints in loop statements can be executed
for a large number of times. These inputs are large mostly due
to the fact that they contain large collection typed variables.
Such as for the above mentioned three methods, they all have
Instances typed (Implements Collection) variables that contain
instances from the original dataset for processing. Some of the
recorded data could potentially be reduced while still
reproducing the method execution and preserve the coverage
elements. The reduction can further reduce the waiting time for
loading the tests, and the debugging efforts required from
developers. Our binary reduction technique is inspired by the
commonly used binary search technique. For each recorded
method-level test, we divide its collection typed input variables
into halves. Next, we take each half and other non-collection
typed inputs and re-execute them with the suspicious method.
We then check whether a half can preserve the originally
covered coverage elements. If one of the halves does preserve
all the coverage elements, we will continue dividing it into
halves and check for the coverage elements repeatedly, until
the minimal subset of the collection variables that can preserve
the coverage elements are identified. Note that when
preserving the coverage during reduction, we are preserving
the exact covered elements of edge coverage, edge-pair
coverage, and edge-set coverage.

We implemented the initial working prototype of our
framework in Java with around 800 lines of code to work with
applications implemented in Java. Minor efforts are required
from developers to instrument the suspicious method’s source
code. After instrumentation, the recording process has been
automated. The reduction approach requires developers to
identify the large collection typed input variables. In the end,
the reloading of the recorded and reduced method-level tests
has been automated for debugging. The currently implemented
coverage criteria are the edge, edge-pair, and edge-set
coverage. The experiments we conducted to evaluate our
framework will be shown in the next section.

III. EXPERIMENTS
 In this section, we discuss how we conducted our
experiments and present the experiment results. In Section III-
A, we discuss how we selected datasets, applications, and
methods to be used for our experiments. Section III-B presents

the statistics of the recorded method-level tests. Section III-C
presents the statistics of the reduced method-level tests. Section
III-D presents how we used a mutation testing tool and the
results of our mutation testing for both the recorded tests, and
the reduced tests. And finally, Section III-E presents the
performance analysis of our framework. All the source code,
generated graphs, recorded method-level tests, reduced
method-level tests and mutation reports are openly available at
https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNa
QOVfT9WGe4OUp_Pa?dl=0 for review. The machine we
used for our experiment is a workstation with two Xeon E5-
2630V3 8 core CPUs @ 2.40GHz, 64GB DDR4 2133 MT/s
memory, and a Samsung 850 EVO 500GB SSD.

A. Subjects
To evaluate our framework in everyday real-world

challenging situations for debugging big data applications, we
have the following criteria to follow when selecting our subject
datasets, applications, and methods.

• To produce experiment results that reflect real-world
situations, our evaluation should be done with real-world
datasets and applications.

• To reflect situations where big data applications take a long
time to execute, the execution time of the candidate
datasets with corresponding candidate applications should
be more than one hour.

• To reflect situations where the significant methods are
extensively executed, candidate methods should be
executed for at least 100 times.

• To reflect the higher complexity of big data applications’
and have a larger code sample to conduct coverage
experiments on, candidate methods should have at least 30
lines of code covered by the original system-level
execution.

• Total of at least five methods should be used for the
experiments.

TABLE I. ALGORITHM EXECUTION TIME

Algorithm Execution time for Phones_gyroscope
Dataset

Apriori N/A (Cannot handle Numeric Attributes)

DecisionTable 9,559 seconds (2.66 Hours)

EM Unable to finish within 24 hours

HierarchicalClusterer OutOfMemoryError

J48 6,357 seconds (1.77 Hours)

LibSVM Unable to finish within 24 hours

LinearRegression N/A (Cannot handle multi-valued nominal
class)

MakeDensityBasedClusterer 191 seconds

RandomTree 577 seconds

SimpleKMeans 301 seconds

https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OUp_Pa?dl=0
https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNaQOVfT9WGe4OUp_Pa?dl=0

 Based on the above criteria, we first randomly selected ten
algorithms’ implementations from the WEKA tool, a collection
of machine learning algorithms for data mining tasks, which is
used in real-world by many data analysts. Next, we selected
one collection of dataset with the largest number of
instances(Collected on 08/18/2018) from the UCI Machine
Learning Repository that consists of 440 real-world collected
datasets as a start. The selected collection of dataset
Heterogeneity Activity Recognition contains four CSV files for
four different types of devices with a total of 43,930,257
instances and 16 attributes. The Heterogeneity Activity
Recognition collection has the data type of multivariate and
time-series and has the attribute type of real numbers. The
dataset is applicable for both classification and clustering in
default. Among the four CSV files, the largest CSV file
Phones_gyroscope dataset of 1.38GB is used to be executed
against the ten randomly selected algorithms to see how long
the execution time is. The randomly selected ten algorithms
and their execution time are shown in Table I. Note for
HierarchicalClusterer implementation, we have tried to
increase the Java heap space to 60GB using JVM argument “-
Xmx60g.” However, it still fails with “OutOfMemoryError”
message.

TABLE II. SELECTED METHOD INFORMATION

Method Algorithm

of
Covered
Lines of

Code

of
Total
Lines

of
Code

of
Execution

Count

buildClusterer EM 115 165 1,910

cutPointsForSubset DecisionTable 62 64 29,564

EM_Init EM 47 53 191

handleNumericAttribute J48 51 53 28,314

select_working_set LibSVM 50 52 417,989

selectModel J48 50 58 12,391

updateStatsForClassifier DecisionTable 46 66 557,305,280

 As shown in Table I, both the DecisionTable and J48
implementation executing the selected dataset meets the
execution time requirement, and we were able to select a total
of five methods within the implementation of these two
algorithms using the selection criteria we previously
mentioned. However, the input parameter type for one of the
selected method getInstance from DecisionTable is of type
“java.io.streamtokenizer,” which does not implement Java
Serializable. Such types of variables will prevent us from
recording its input without making further instrumentation that
could potentially change the functionality of the method, which
makes this method inapplicable to our experiments. For EM
and LibSVM implementations, they do in fact meet the
execution time requirement, but they are taking too long to
execute the Phones_gyroscope dataset for experimentation
purpose due to our limited resources and time. We reduced the
size of the Phones_gyroscope dataset by dividing the dataset in
half and continue to divide in half until the execution time for

EM and LibSVM are reduced to be near an hour. The reduced
Phones_gyroscope dataset for EM and LibSVM now has the
size of 3.3 MB. EM will now take 5352 seconds (1.49 Hours)
to execute and 4491 seconds (1.25 Hours) for LibSVM.

 After two datasets (original Phone_gyroscope dataset and
the reduced dataset) and four algorithms’ implementations
(DecisionTable, EM, J48, LibSVM) have been selected, we
used EclEmma [26], a Java code coverage tool for Eclipse, to
identify the methods with more than 30 lines of code(without
comments and spaces) covered by the original system-level
execution. A total of seven methods are selected based on the
selection criteria we discussed previously. The selected
methods and their information are shown in Table II. These
methods are then instrumented as previously described in
Section II.

B. Recorded Method-Level Tests
For our experiments, we have recorded method-level tests

for all of the seven selected methods for preserving edge
coverage, edge-pair coverage, and edge-set coverage of the
original system-level execution. Some important information
about the recorded method-level tests is shown Table III. Note
that the code coverage column in Table III is for all three
types of recorded tests, as well as the original failing system-
level execution. This is because once all edges are preserved,
all the code coverage will be preserved as well, and edge-pair
coverage and edge-set coverage both subsume edge coverage.

Based on the results shown in Table III, we can see that
only a small number of method-level tests is sufficient for
preserving coverage for a suspicious method. When failures
occur on a system level, recording method-level tests for the
suspicious methods using our framework could potentially
save developers a lot of time and efforts. The actual fault
detection ability of our recorded method-level tests will be
further evaluated using mutation testing in Section III-D.

C. Reduced Method-Level Tests
 As shown in Table IV, while some of the tests have a
reasonable size, three of the methods, cutPointsForSubset,
selectModel and updateStatsForClassifier have significantly
large inputs for their recorded method-level tests. While
debugging with these tests is easier than debugging with
dataset on a system level, loading and debugging these tests
could still take some time. We will further reduce the size of
these tests using our binary reduction approach that was
discussed in Section II. In Table V, we compare the
differences between the recorded method-level tests before and
after they were reduced.

 For size reduction, our binary reduction technique was able
to reduce the input size of tests for five out of seven methods.
Our result shows that the reduction amount is often above 95%.
Most of the method-level tests can be reduced significantly
while still preserving our selected coverage elements. While
one of the tests for selectModel can be reduced to 1.7 KB
from1.63 GB, some tests still have a fair amount of input data
remaining, such as the reduction from 1.63GB to 37.22 MB for
one of the tests of cutPointsForSubset. Furthermore, we
wereunable to reduce any test inputs for two methods,

TABLE III. RECORDED METHOD EXECUTION INFORMATION

TABLE IV. TEST REDUCTION RESULT

Method Combined
of Tests

of
Reducible
Collection
Variables

Average
Input Size (MB)

Total
Input Size (MB)

Maximum
Input Size (MB)

Minimum
Input Size (MB)

Test Execution
Time (Seconds)

Recorded Reduced Recorded Reduced Recorded Reduced Recorded Reduced Recorded Reduced

buildClusterer 4 1 3.18 3.18 12.75 12.75 3.23 3.23 3.16 3.16 5 s 5 s

cutPointsForSubset 18 2 1628.16 9.77 29306.81 176.25 1628.16 37.22 1628.16 0.001 1836 s 5 s

EM_Init 3 1 4.71 4.71 14.12 14.12 4.34 4.34 5.18 5.18 5 s 5 s

handleNumericAttribute 33 1 54.00 0.74 1781.76 24.42 1300.48 1.75 0.0012 0.001 155 s 2 s

select_working_set 63 2 39.50 0.08 2488.32 5.04 41.9 0.29 1.83 0.002 176 s 1 s

selectModel 6 2 1392.64 0.02 8357.04 0.11 1628.16 0.01 1320.96 0.001 682 s 1 s

updateStatsForClassifier 11 1 1269.76 12.53 13967.34 138.06 1269.76 44.86 1269.76 0.51 875 s 3 s

buildClusterer and EM_Init. We further investigated this by
looking into how the collection typed input variables are
accessed and used. We noticed mainly three different
scenarios that may have contributed to our results.

The first scenario is when a collection variable is partially
used as inputs. When the partially accessed instances are in a
consecutive sequence in the collection variable, or when only
one instance is accessed, our binary reduction technique will
reduce such collection variable to its minimal subset.
However, if the accessed instances are spread across the
collection variable, our binary reduction will not be able to
identify only the accessed instances. Hence, the reduction may
not be minimal, many unnecessary data based on the coverage
elements may remain.

The second scenario is when the collection variable is
accessed in branching statements, e.g. for the tests recorded
for buildClusterer and EM_Init. The collection variables
identified for these two methods were used at a few, branching
statements and passed to other methods that return value to the
execution as well. In this situation, maintaining the exact
coverage elements can be difficult to achieve for our binary
reduction technique.

The third scenario is when the collection variable is not
accessed at all. In our implementation, to reproduce method
executions precisely, we record both the parameters passed to

the method and the object where the method was invoked
from, ensuring all possible inputs are recorded. However, not
all recorded information is used as inputs, such as for some
instance variables of the object where the method was invoked
from. In this situation, our binary reduction technique may be
able to reduce un-accessed collection variables to empty,
while still preserving the coverage elements.

The first and second scenario can potentially use delta
debugging [14] or preserving superset of the coverage
elements to further the reduction. However, delta debugging
could significantly increase the reduction overhead, and
preserving superset of the coverage elements may lose or
introduce some coverage elements that could potentially have
large impact on the reduced method-level test. For the third
scenario, we can implement systematic static analysis in the
future to help our framework identify and record only the
necessary inputs for reproducing method executions.

For time reduction, many of the recorded set of method-
level tests are now taking seconds instead of minutes after the
binary reduction. The loading time of these tests is
significantly reduced. When debugging with these reduced
tests, not only the tests will be short and easier to debug, the
waiting time is also easy to manage.

Method
of Tests
for Edge
Coverage

of
Covered

Edges

of Tests
for Edge-

Pair
Coverage

of
Covered

Edge-
Pairs

of Tests
for Edge-

Set
Coverage

of
Combined
Recorded

Tests

of Original
Execution

Count

Code
Coverage

Total # of
Lines of

Code

buildClusterer 3 83 4 181 3 4 1,910 69.70% 165

cutPointsForSubset 8 30 9 64 17 18 29,564 96.88% 64

EM_Init 1 24 3 55 1 3 191 88.68% 53

handleNumericAttribute 4 32 5 70 33 33 28,314 96.23% 53

select_working_set 7 41 11 111 61 63 417,989 96.15% 52

selectModel 5 35 5 74 6 6 12,391 86.21% 58

updateStatsForClassifier 3 26 5 59 9 11 557,305,280 69.70% 66

TABLE V. MUTATION TESTING RESULT

Method

Edge Coverage
Mutant Killing Rate

Edge-pair Coverage
Mutant Killing Rate

Edge-set Coverage
Mutant Killing Rate

Combined
Recorded Tests
Mutant Killing

Rate

of
Mutants

Generated
for

Covered
Code

Code
Coverage

Total
of

Lines
of

Code Recorded Reduced Recorded Reduced Recorded Reduced Recorded Reduced

buildClusterer 79.18% 79.18% 79.18% 79.18% 79.18% 79.18% 79.18% 79.18% 269 69.70% 165

cutPointsForSubset 81.71% 81.1% 81.71% 82.32% 85.98% 85.98% 85.98% 85.98% 164 96.88% 64

EM_Init 87.25% 87.25% 87.25% 87.25% 87.25% 87.25% 87.25% 87.25% 102 88.68% 53

handleNumericAttribute 89.29% 88.57% 90.71% 90.71% 91.43% 91.43% 91.43% 91.43% 140 96.23% 53

select_working_set 71.88% 75% 73.44% 75% 75% 78.91% 75% 78.91% 128 96.15% 52

selectModel 57.58% 57.58% 57.58% 57.58% 62.88% 62.88% 62.88% 62.88% 132 86.21% 58

updateStatsForClassifier 86.07% 81.15% 86.07% 84.43% 86.89% 86.07% 86.89% 86.89% 122 69.70% 66

Average 79.00% 78.55% 79.42% 79.49% 81.23% 81.67% 81.23% 81.79%

D. Mutation Testing
For mutation testing, we used PITest (PIT) [24], a

mutation testing system for Java, to evaluate the fault
detection effectiveness of our recorded method-level tests. In
PIT, different types of faults (or mutants) are automatically
seeded into the source code. Each mutation (A mutated
version of source code) contains only one fault and is executed
against the unit tests that developers provide.

Mutation testing requires the provided unit tests to be
passing tests. This because only when the mutant’s output
differs from the expected output, a mutant is said to be killed.
In our experiments, when a method-level test is executed, we
record the outputs as the expected output for mutation testing
purpose. The output for each test contains not only the
returned object if there is one, but also the object where the
method was invoked from and the input parameters of the
method. This is because the values of these parameters and the
object where the method was invoked from could change as
well and should be considered as part of the output. PIT
provides a total of 25 different mutators to mutate different
type of code. When conducting mutation testing, we have
enabled all 25 mutators in PIT for generating mutants in our
selected methods. PIT also provide an option to set a timeout
factor for executing each test against each mutant; the default
is 1.25 times the original test execution time. We increased the
timeout factor to 10 times the original execution time, to avoid
false positives killing of mutants. This is because a timed-out
mutant is also considered as a killed mutant. We have also
increased the Java heap size to 60GB and stack size to 128MB
using JVM configuration in PIT, to avoid false positive killing
of memory error mutants.

Table V shows the mutation testing result of our recorded
and reduced method-level tests. Please note that PIT currently
does not support the mutant generation of only covered
statements. If a mutant is located at a statement that was not
covered by the test, the mutant will not be exercised, hence
will not be killed. Such mutants will not be considered in our

experiments. This is because if a mutant is not exercised by
our recorded tests, it is also not exercised by the original
system-level execution. The total number of mutants
generated for each selected method in Table V are calculated
manually which consist of only exercised mutants by our tests.

For recorded method-level tests without reduction shown
in Table V, we can see that most of the recorded tests for
different methods and coverage criteria have a high mutant
killing rate. Even without comparing to the original system-
level execution, with a small number of tests, the tests show
high effectiveness in detecting potential faults that could occur
in the selected methods. Five out of seven selected methods
have tests with over 80% of mutant killing rate. The average
mutant killing rate across seven methods are around 80% for
all four different sets of tests that achieves edge coverage,
edge-pair coverage, edge-set coverage, and these three
combined. This indicates the method-level tests generated
using our framework can effectively help developers to debug
and find faults they are looking for, while significantly
reducing the time and efforts required from developers for
debugging.

For reduced method-level tests, their mutant killing rates
are nearly the same as their original recorded tests. With
differences no larger than 5% of their original killing rate. We
even see some cases with increased mutant killing rate, such
as for the edge-pair coverage of method
“cutPointsForSubset”. This is likely due to some coverage
elements other than our selected coverage criteria were
introduced to the reduction of the method-level tests. The
mutation testing results of the reduce tests show that even after
a significant amount of inputs are reduced, if the coverage
elements are preserved, the fault detecting effectiveness of the
original method-level tests can still be preserved. Our binary
reduction technique on method-level tests can further help
developers to reduce efforts for debugging while maintaining
the debugging effectiveness of the method-level tests.

TABLE VI. SYSTEM-LEVEL MUTATION TESTING

Method Algorithm

of Mutants
Killed by

System-Level
Execution

of
Propagatable

Mutants Killed
by Combined
Method-Level

Tests
select_working_set LibSVM 58 51

selectModel J48 61 56

We also investigated the two methods select_working_set

and selectModel with the lowest mutant killing rate by
comparing their results to the mutation testing results of their
system-level execution. We have planned on comparing all
recorded method-level tests’ mutation testing results with their
corresponding system-level execution. However, while
mutation testing is a very effective method to evaluate the
quality of tests, mutation testing is a rather expensive method
to use. In this paper, we only have two system-level mutation
testing results for select_working_set and selectModel.
Moreover, their system-level mutation tests both took over
one week to complete. Note that some mutants that can be
killed with method-level tests are not propagatable on the
system level. We considered the option of recording all
method executions of a method during its system-level
execution. However, it is impractical, because of our selected
methods have been executed with a large number of times,
and many of them have large inputs as well. For comparing
mutation testing results between method-level tests and
system-level execution, we will only be considering the
propagatable mutants for the method-level tests.

The system-level mutation testing results for
select_working_set and selectModel are shown in Table VI.
For LibSVM, the system-level execution was able to kill 58
mutants, the combined method-level test of
select_working_set was able to kill 51 out 58 propagatable
mutants with a propagatable mutant killing rate of 87.93%.
For J48, the system-level execution was able to kill 61
mutants, the combined method-level tests of selectModel were
able to kill 56 out of 61 propagatable mutants with a
propagatable mutant killing rate of 91.80%. The further
investigation shows the reason why method-level tests
recorded for select_working_set and selectModel have a lower
mutant killing rate. It is likely because of their original
system-level execution has a lower mutant killing rate.

Furthermore, after investigating the un-killed propagatable
mutants in the recorded method-level tests, three un-killed
propagatable mutants from select_working_set and one from
selectModel were mutations related to modifying boundary
conditions. Which means by adding more method-level tests
that cover boundary conditions, the higher mutant killing rate
can be achieved for the method-level test. With a few basic
coverage criteria implemented for our framework, method-
level tests produced by our framework can be very effective in
detecting faults during debugging.

E. Performance Evaluation
We evaluate the performance of our implementation by

investigating the original system-level execution time, the
time taken to evaluate and record the method-level tests, time
taken to reduce tests, and the time taken to execute the
recorded method-level tests. The results are shown in Table
VII. Recall that in the experiments for mutation testing, both
inputs and outputs of the selected method executions are
recorded. However, the results shown in Table VII are only
for recording the inputs and executing the recorded method-
level tests with only inputs without comparing their outputs.
This is because in real-world use of our framework, outputs of
the method executions do not need to be recorded.

As previously mentioned in Section II, we have two
solutions for recording selected method executions. One
method is to serialize and temporarily store the inputs for each
method execution and record the inputs locally when a method
execution is determined to be significant. This method will
only require executing the entire system once. However, in
cases where a method has large inputs or is executed for a
large number of times, this method may have a significant
performance issue due to all the unnecessary serialization. The
second solution was to execute the entire system twice. In the
first execution, we evaluate each method execution and store
the execution IDs of the to be recorded method executions. In
the second execution, we only serialize and record the inputs
of the selected method executions based on their execution
IDs. The numbers marked with “*” indicates that the method-
level tests were recorded using the second recording method.
In Table VII.

TABLE VII. PERFORMANCE EVALUATION

Method
Original

Execution
Time

Combined
Test

Recording
Time

Combined Test
Execution Time

Combined
Test

Reduction
Time Recorded Reduced

buildClusterer 5352 s 6303 s 5 s 5 s 27 s

cutPointsForSubset 9559 s *21615 s 1836 s 5 s 7558 s

EM_Init 5356 s 5361 s 5 s 5 s 22 s

handleNumericAttribute 6357 s *14624 s 155 s 2 s 1965 s

select_working_set 4491 s *11531 s 176 s 1 s 2763 s

selectModel 6357 s *14212 s 682 s 1 s 3122 s

updateStatsForClassifier 9559 s *30513 s 875 s 3 s 4088 s

In Table VII, we see that recording method-level tests

using our framework can take up to three times of the initial
system execution. Additional test reduction time could take as
much as two hours based on the size of the inputs (Our binary
reduction utilizes sterilization for deep copy as well). We
believe the time is manageable for developers. This is because
without our framework, developers could spend more time to
debug their big data application. Moreover, our approach is
automated, allowing developers to work on other tasks while
running our approach. For executing the recorded method-
level tests, we see that it usually takes much less time than

executing the entire system, especially for the reduced tests,
the execution time can range from as little as one second to
five seconds. Overall, we believe that recording and reducing
method-level tests using our framework will help developers
save a lot of time and efforts in debugging big data
applications.

IV. RELATED WORK
We first review previous work related to generating tests

for big data applications. Csallner et al. proposed an approach
that uses dynamic symbolic execution to automatically
generate tests to test general MapReduce programs [5]. Morán
et al. proposed MRFlow, a testing technique tailored to test
MapReduce programs [11]. Morán et al. also proposed a
technique to generate different infrastructure configurations
for a given MapReduce application that can be used to reveal
functional faults [10]. They also proposed an automatic test
framework that can detect functional faults automatically [9].
Li et al. proposed a tool to generate test input data using input
doing model information for testing BigData applications [8].
Previous work reported in [5, 9, 10, 11] focuses on generating
tests that help to identify functional faults, i.e., faults that will
cause the program to generate expected output for some
configurations and invalid output for other configurations. In
contrast, when a failure occurs for big data application, our
work focuses recording existing method executions that
preserves coverage as tests to facilitate the debugging of
certain suspicious methods searching for the fault(s) that may
have caused the failure observed at the system level.

Next, we review work related to debugging big data
applications. Gulzar et al. proposed a tool BigDebug that
simulates breakpoints to enable a developer to inspect a
program without actually pausing the entire computation [13].
To help a user inspect millions of records passing through a
data-parallel pipeline, BigDebug provides guarded
watchpoints, which dynamically retrieve only those records
that match a user-defined guard predicate. Li et al. proposed a
technique that uses different annotators to debug the tracking
data independently and their debugging results were collected
for joint correction propagation for later analysis [15]. Our
work is similar to Gulzar [13] and Li [15] regarding the
debugging of big data applications without re-executing the
potentially time-consuming original system-level execution. In
contrast, our work focuses on recording significant method-
level executions to be replayed for debugging instead of
recording part of the system-level inputs [13] and log
information [15].

 Next, we review work related to recording program
information and using them in unit test generation. Pasternak
et al. proposed a technique that records interactions occurring
during the execution of Java programs and used that
information to construct unit tests automatically using
GenUTest [16]. Orso et al. proposed a technique and
conducted a feasibility study using SCARPE, a prototype tool,
for selective capture and replay of program executions [12].
Similar to work presented in this paper, Orso’s technique [12]
can be used to automatically generate unit tests based on the

recorded information. Our work is similar to Pasternak [16]
and Orso [12] regarding recording the method-level tests
based on the system-level execution. In contrast, our work
does not require complex instrumentation techniques on the
target’s bytecode [12], the instrumentation used in our
implementation is simple and relies on certain code coverage
criterion. And our implementation will work on any method,
as long as their input variables implement Java Serializable,
where GenUTest partially works on some inner classes and
anonymous classes.

Next, we review work related to reducing input size for
debugging purpose. Zeller et al. proposed a technique to
isolate failure-inducing inputs on the system level to reduce
work required for debugging using Delta Debugging [14].
Clause [22] et al. presented a technique based on dynamic
tainting for automatically identifying subsets of a program’s
inputs that are relevant to a failure. Our work is similar to
Zeller [14] and Clause [22] regarding reducing inputs based
on certain aspects of the execution for debugging purpose. In
contrast, we preserve coverage elements instead of failure, and
using binary reduction for the dividing, which can have better
performance than Delta Debugging and dynamic tainting.

V. CONCLUSION & FUTURE WORK
 In this paper, we presented an approach to provide
developers with concrete method-level tests that were
recorded from the system-level input dataset and selected
using edge, edge-pair, and edge-set coverage. Binary
reduction is available for reducing method-level tests with
large input. The set of method-level tests that are provided by
our approach will help developers to effectively debug
suspicious methods against properties of the original input
dataset, and significantly reduce time required for debugging
big data applications by avoiding the executions of other non-
important methods while maintaining a high probability that
the recorded tests will trigger failure(s) caused by the fault(s).
 For future work, our approach will involve developing
techniques for automatic code static analysis that provides
information for instrumenting the source code. Moreover,
automatic code instrumentation for inserting code to record
related coverage elements. We will also focus on designing
more detailed experiments with more real-world big data
applications, datasets, and coverage criteria to more precisely
analyze the effectiveness of our approach.

VI. ACKNOWLEDGMENT
 This work is supported by a research grant
(70NANB15H199) from Information Technology Lab of
National Institute of Standards and Technology (NIST).
 Disclaimer: Certain software products are identified in this
document. Such identification does not imply
recommendation by the NIST, nor does it imply that the
products identified are necessarily the best available for the
purpose.

REFERENCES
[1] Blue, D., Segall, I., Tzoref-Brill, R., & Zlotnick, A. (2013, May).

Interaction-based test-suite minimization. In Proceedings of the 2013
International Conference on Software Engineering (pp. 182-191). IEEE
Press.

[2] Bryce, R. C., Sampath, S., Pedersen, J. B., & Manchester, S. (2011).
Test suite prioritization by cost-based combinatorial interaction
coverage. International Journal of System Assurance Engineering and
Management, 2(2), 126-134.

[3] Chandrasekaran, J., Feng, H., Lei, Y., Kuhn, D. R., & Kacker, R. (2017,
March). Applying Combinatorial Testing to Data Mining Algorithms. In
Software Testing, Verification and Validation Workshops (ICSTW),
2017 IEEE International Conference on (pp. 253-261). IEEE.

[4] Chen, T. Y., & Lau, M. F. (1996). Dividing strategies for the
optimization of a test suite. Information Processing Letters, 60(3), 135-
141.

[5] Csallner, C., Fegaras, L., & Li, C. (2011, September). New ideas track:
testing mapreduce-style programs. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering (pp. 504-507). ACM.

[6] Harrold, M. J., Gupta, R., & Soffa, M. L. (1993). A methodology for
controlling the size of a test suite. ACM Transactions on Software
Engineering and Methodology (TOSEM), 2(3), 270-285.

[7] Jones, J. A., & Harrold, M. J. (2003). Test-suite reduction and
prioritization for modified condition/decision coverage. IEEE
Transactions on software Engineering, 29(3), 195-209.

[8] Li, N., Lei, Y., Khan, H. R., Liu, J., & Guo, Y. (2016, August).
Applying combinatorial test data generation to big data applications. In
Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (pp. 637-647). ACM.

[9] Morán, J., Bertolino, A., de la Riva, C., & Tuya, J. (2017, July).
Towards Ex Vivo Testing of MapReduce Applications. In Software
Quality, Reliability and Security (QRS), 2017 IEEE International
Conference on (pp. 73-80). IEEE.

[10] Morán, J., Rivas, B., De La Riva, C., Tuya, J., Caballero, I., & Serrano,
M. (2016, August). Infrastructure-aware functional testing of mapreduce
programs. In Future Internet of Things and Cloud Workshops
(FiCloudW), IEEE International Conference on (pp. 171-176). IEEE.

[11] Morán, J., Riva, C. D. L., & Tuya, J. (2015, August). Testing data
transformations in MapReduce programs. In Proceedings of the 6th
International Workshop on Automating Test Design, Selection and
Evaluation (pp. 20-25). ACM.

[12] Orso, A., & Kennedy, B. (2005, May). Selective capture and replay of
program executions. In ACM SIGSOFT Software Engineering Notes
(Vol. 30, No. 4, pp. 1-7). ACM.

[13] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep
Tetali, Tyson Condie, Todd Millstein, Miryung Kim. BigDebug:
Debugging Primitives for Interactive Big Data Processing in Spark.
Proceeding ICSE '16 Proceedings of the 38th International Conference
on Software Engineering, Pages 784-795

[14] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
Inducing Input”, IEEE Transactions on Software Engineering28(2),
February 2002, pp. 183-200.

[15] Mingzhong Li, Zhaozheng Yin. Debugging Object Tracking by a
Recommender System with Correction Propagation. In IEEE
Transactions on Big Data (Volume: 3, Issue: 4, Dec. 1 2017)

[16] Pasternak, B., Tyszberowicz, S., & Yehudai, A. (2009). GenUTest: a
unit test and mock aspect generation tool. International journal on
software tools for technology transfer, 11(4), 273.

[17] Pan, J., & Center, L. T. (1995). Procedures for reducing the size of
coverage-based test sets. In Proceedings of International Conference on
Testing Computer Software.

[18] Sampath, S., Bryce, R. C., Jain, S., & Manchester, S. (2011, September).
A tool for combination-based prioritization and reduction of developer-
session-based test suites. In Software Maintenance (ICSM), 2011 27th
IEEE International Conference on (pp. 574-577). IEEE.

[19] N. Li, U. Praphamontripong, and J. Offutt, “An experimental
comparison of four unit test criteria: Mutation, edge-pair, all-uses and

prime path coverage,” in Second International Conference on Software
Testing Verification and Validation, ICST 2009, Denver, Colorado,
USA, April 1-4, 2009, Workshops Proceedings, 2009, pp. 220–229.

[20] Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA
Workbench. Online Appendix for "Data Mining: Practical Machine
Learning Tools and Techniques", Morgan Kaufmann, Fourth Edition,
2016.

[21] Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science.

[22] J. Clause and A. Orso. Penumbra: Automatically identifying failure
relevant inputs using dynamic tainting. In ISSTA, pages 249–260, 2009.

[23] “Atlas Platform, EnSoft Corp.” http://www.ensoftcorp.com.
[24] “PITest.” http://pitest.org/.
[25] “FST, fast-serialization.” https://github.com/RuedigerMoeller/fast-

serialization.
[26] “EclEmma.” https://www.eclemma.org/.
[27] “Gson.” https://futurestud.io/tutorials/gson-getting-started-with-java-

json-serialization-deserialization.

http://www.ensoftcorp.com/
http://pitest.org/
https://github.com/RuedigerMoeller/fast-serialization
https://github.com/RuedigerMoeller/fast-serialization
https://www.eclemma.org/
https://futurestud.io/tutorials/gson-getting-started-with-java-json-serialization-deserialization
https://futurestud.io/tutorials/gson-getting-started-with-java-json-serialization-deserialization

	Word Bookmarks
	OLE_LINK64
	OLE_LINK65
	OLE_LINK69
	OLE_LINK45
	OLE_LINK70
	OLE_LINK71
	OLE_LINK72
	OLE_LINK58
	OLE_LINK59
	OLE_LINK73
	OLE_LINK74
	OLE_LINK60
	OLE_LINK3
	OLE_LINK75
	OLE_LINK7
	OLE_LINK5
	OLE_LINK4
	OLE_LINK1
	OLE_LINK2
	OLE_LINK15
	OLE_LINK21
	OLE_LINK61
	OLE_LINK62
	OLE_LINK63
	OLE_LINK8
	OLE_LINK9
	OLE_LINK19
	OLE_LINK10
	OLE_LINK11
	OLE_LINK12
	OLE_LINK18
	OLE_LINK24
	OLE_LINK25
	OLE_LINK26
	OLE_LINK30
	OLE_LINK29
	OLE_LINK27
	OLE_LINK28
	OLE_LINK31
	OLE_LINK32
	OLE_LINK6
	OLE_LINK50
	OLE_LINK55
	OLE_LINK56
	OLE_LINK51
	OLE_LINK52
	OLE_LINK53
	OLE_LINK43
	OLE_LINK44
	OLE_LINK41
	OLE_LINK35
	OLE_LINK36
	OLE_LINK37
	OLE_LINK38
	OLE_LINK39
	OLE_LINK40
	OLE_LINK42
	OLE_LINK48
	OLE_LINK49
	OLE_LINK46
	OLE_LINK47

